Efficient and Stable Carbon-Based All-Inorganic CsPbIBr2 Perovskite Solar Cells Obtained via Treatment by Biological Active Substance Additive
Xin Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYu Jing
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Jingyang Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorShibo Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorXiao Liu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYuan Xu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorHuayan Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorZhongliang Yan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorJihuai Wu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Zhang Lan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorXin Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYu Jing
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Jingyang Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorShibo Wang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorXiao Liu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorYuan Xu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorHuayan Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorZhongliang Yan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorJihuai Wu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Zhang Lan
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Fujian Engineering Research Center of Green Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorAbstract
Stability has always been a major challenge in the commercialization of perovskite solar cells (PSCs). All-inorganic perovskite semiconductor materials have attracted much attention in the field and are considered to be the best choice to solve this challenge due to their good thermal stability. However, all-inorganic perovskite films contain a high density of defects that provide channels for nonradiative recombination of charges and ion transport, which seriously threaten the stability of PSCs. Different defects have corresponding passivation mechanisms. Through the introduction of multifunctional additives, multiple passivation effects can be realized at the same time, and the power conversion efficiency (PCE) can be greatly improved. Herein, the introduction of the small biological molecule (adenosine) as the additive into the perovskite precursor can maximize the passivation mechanisms of Lewis bases. The doping of adenosine improves the crystallinity, reduces the density of trap states and enhances the light absorption, and finally obtains PSCs with the best PCE of 10.24%, which is 30.8% higher than that of the standard device. In addition, adenine is also introduced as a comparative study, and the treated CsPbIBr2 PSC with a PCE of 9.72% is finally obtained.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202201159-sup-0001-SuppData-S1.pdf804.7 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Wang, M. Mujahid, Y. Duan, Z. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.
- 2Q. Tai, K.-C. Tang, F. Yan, Energy Environ. Sci. 2019, 12, 2375.
- 3J. Zhu, X. Yan, J. Cheng, Nanoscale Res. Lett. 2018, 13, 19.
- 4J. Zhang, G. Hodes, Z. Jin, S. Liu, Angew. Chem., Int. Ed. 2019, 58, 15596.
- 5A. Ho-Baillie, M. Zhang, C. F. J. Lau, F. J. Ma, S. J. Huang, Joule 2019, 3, 938.
- 6 Best research cell efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf (accessed: January 2020).
- 7J. Tian, Q. Xue, Q. Yao, N. Li, C. J. Brabec, H.-L. Yip, Adv. Energy Mater. 2020, 10, 2000183.
- 8K. O. Brinkmann, J. J. He, F. Schubert, J. Malerczyk, C. Kreusel, F. V. Hassend, S. Weber, J. Song, J. L. Qu, T. Riedl, ACS Appl. Mater. Interfaces 2019, 11, 40172.
- 9Y. Guo, X. Yin, J. Liu, S. Wen, Y. Wu, W. Que, Sol. RRL 2019, 3, 1900135.
- 10A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 11Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 12J. Duan, X. Yang, Y. Duan, Q. Zhou, Q. Tang, Angew. Chem., Int. Ed. 2021, 60, 10608.
- 13L. Cui, B. He, Y. Ding, J. Zhu, X. Yao, J. Ti, H. Chen, Y. Duan, Q. Tang, Chem. Eng. J. 2022, 431, 134193.
- 14J. Zhu, B. He, X. Yao, H. Chen, Y. Duan, J. Duan, Q. Tang, Small 2022, 18, 2106323.
- 15F. Yan, P. Yang, J. Li, Q. Guo, Q. Zhang, J. Zhang, Y. Duan, J. Duan, Q. Tang, Chem. Eng. J. 2022, 430, 132781.
- 16Q. Y. Guo, J. L. Duan, J. S. Zhang, Q. Y. Zhang, Y. Y. Duan, X. Y. Yang, B. L. He, Y. Y. Zhao, Q. W. Tang, Adv. Mater. 2022, 34, 2202301.
- 17M. J. Jeong, K. M. Yeom, S. J. Kim, E. H. Jung, J. H. Noh, Energy Environ. Sci. 2021, 14, 2419.
- 18J. Y. Xiao, J. J. Shi, H. B. Liu, Y. Z. Xu, S. T. Lv, Y. H. Luo, D. M. Li, Q. B. Meng, Y. L. Li, Adv. Energy Mater. 2015, 5, 1401943.
- 19J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829.
- 20J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 14009.
- 21S. S. Xiang, W. P. Li, Y. Wei, J. M. Liu, H. C. Liu, L. Q. Zhu, S. H. Yang, H. N. Chen, Iscience 2019, 15, 156.
- 22X. Meng, Z. Wang, W. Qian, Z. Zhu, T. Zhang, Y. Bai, C. Hu, S. Xiao, Y. Yang, S. Yang, J. Phys. Chem. Lett. 2019, 10, 194.
- 23Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, ChemSusChem 2019, 12, 983.
- 24X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Nano Energy 2019, 56, 184.
- 25D. Zhang, H. Yang, Z. Liu, A. Liu, G. Ji, Mol. Simul. 2018, 44, 200.
- 26J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Adv. Energy Mater. 2018, 8, 1802346.
- 27S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, R. Zhang, H. Chen, ACS Energy Lett. 2018, 3, 1824.
- 28W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, ChemSusChem 2019, 12, 2318.
- 29Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, T. Ma, J. Mater. Chem. A 2019, 7, 1227.
- 30X. L. Zhang, R. Y. Deng, F. Yang, C. P. Jiang, S. H. Xu, M. K. Li, ACS Photonics 2018, 5, 2997.
- 31B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842.
- 32S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2019, 141, 5781.
- 33N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano 2014, 8, 9815.
- 34W. Hu, W. Zhou, X. Lei, P. Zhou, M. Zhang, T. Chen, H. Zeng, J. Zhu, S. Dai, S. Yang, S. Yang, Adv. Mater. 2019, 31, 1806095.
- 35H. Huang, X. Liu, M. Duan, J. Ji, H. Jiang, B. Liu, S. Sajid, P. Cui, D. Wei, Y. Li, M. Li, ACS Appl. Energy Mater. 2020, 3, 5039.
- 36G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang, Y. Qi, Nano Energy 2019, 65, 104015.
- 37W. J. Zhao, J. Xu, K. He, Y. Cai, Y. Han, S. M. Yang, S. Zhan, D. P. Wang, Z. K. Liu, S. Z. Liu, Nano-Micro Lett. 2021, 13, 169.
- 38S. Yang, S. S. Chen, E. Mosconi, Y. J. Fang, X. Xiao, C. C. Wang, Y. Zhou, Z. H. Yu, J. J. Zhao, Y. L. Gao, F. De Angelis, J. S. Huang, Science 2019, 365, 473.
- 39H. Rao, S. Ye, F. Gu, Z. Zhao, Z. Liu, Z. Bian, C. Huang, Adv. Energy Mater. 2018, 8, 1800758.
- 40J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem., Int. Ed. 2018, 57, 3787.
- 41Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, S. Dai, J. Mater. Chem. A 2019, 7, 6450.
- 42J. Liang, X. Han, J.-H. Yang, B. Zhang, Q. Fang, J. Zhang, Q. Ai, M. M. Ogle, T. Terlier, A. A. Martí, J. Lou, Adv. Mater. 2019, 31, 1903448.
- 43Y. Xu, G. Li, R. Li, Y. Jing, H. Zhang, X. Wang, Z. Du, J. Wu, Z. Lan, Nano Energy 2022, 95, 106973.
- 44M. G. A. E. Wahed, E. M. Nour, S. Teleb, S. Fahim, J. Therm. Anal. Calorim. 2004, 76, 343.
- 45D. Wang, W. Li, Z. Du, G. Li, W. Sun, J. Wu, Z. Lan, J. Mater. Chem. C 2020, 8, 1649.
- 46W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, Adv. Energy Mater. 2018, 8, 1802080.
- 47O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, Appl. Phys. Lett. 2016, 109, 173903.
- 48K. Wang, Y. Shi, L. Gao, R. Chi, K. Shi, B. Guo, L. Zhao, T. Ma, Nano Energy 2017, 31, 424.
- 49W. Zhang, X. Zhang, T. Wu, W. Sun, J. Wu, Z. Lan, Electrochim. Acta 2019, 293, 211.
- 50W. Zhu, Q. Zhang, C. Zhang, Z. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, Y. Hao, ACS Appl. Energy Mater. 2018, 1, 4991.
- 51Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu, S. Liu, Adv. Funct. Mater. 2020, 30, 1909972.
- 52M. Li, S. Liu, F. Qiu, Z. Zhang, D. Xue, J. Hu, Adv. Energy Mater. 2020, 21, 2000501.
- 53M. Li, J. Shao, Y. Jiang, F. Qiu, S. Wang, J. Zhang, G. Han, J. Tang, F. Wang, Z. Wei, Y. Yi, Y. Zhong, J. Hu, Angew. Chem., Int. Ed. 2021, 30, 16388.