Overcoming the Performance Limitation of Cs2AgBiBr6 Double Perovskites Using Bifacial Photovoltaic Design
Isak Muzammil
Chemical Engineering Department, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, 12220 Indonesia
Search for more papers by this authorCorresponding Author
Gede W. P. Adhyaksa
Chemical Engineering Department, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, 12220 Indonesia
Center of Excellence for Advanced Materials, Universitas Pertamina, Jakarta, 12220 Indonesia
Center for Reliability and Structural Integrity, Universitas Pertamina, Jakarta, 12220 Indonesia
Search for more papers by this authorIsak Muzammil
Chemical Engineering Department, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, 12220 Indonesia
Search for more papers by this authorCorresponding Author
Gede W. P. Adhyaksa
Chemical Engineering Department, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, 12220 Indonesia
Center of Excellence for Advanced Materials, Universitas Pertamina, Jakarta, 12220 Indonesia
Center for Reliability and Structural Integrity, Universitas Pertamina, Jakarta, 12220 Indonesia
Search for more papers by this authorAbstract
Cs2AgBiBr6 is an encouraging example of perovskites which shows potential toward the development of more stable and nontoxic photoactive materials. However, relative to its necessarily large optical thickness, the material has substantially deficient electron diffusion lengths, which limit its photovoltaic efficiency. Herein, this problem is solved by designing a double-sided semitransparent architecture for a Cs2AgBiBr6-based photovoltaic material. In this case, the bifacial design deliberately creates an imbalance between the electron and hole densities, resulting in asymmetric lengths of carrier conduction near their respective transporting layers. Coupled optoelectronic simulations suggest that the use of the bifacial architecture results in an improvement of around 34% in the efficiency, from 3.47% to 4.64%, compared to the standard configuration. This method is effective to improve electron conduction in Cs2AgBiBr6, which is typically severe compared to its hole conduction. Finally, the strength of the correlation between the power conversion efficiency of the bifacial architecture and the diffusion length, asymmetric ratio of electron and hole conduction, and light albedo factor are explored. The results highlight some ways to improve the photovoltaic efficiency of Cs2AgBiBr6 above 8%, for instance, through tuning the surface recombination and band alignment between Cs2AgBiBr6 and the hole-transporting layer.
Conflict of Interest
G.W.P.A. is technological advisor, and has an equity interest for the development of materials and PV technologies at Materials-X, and PT Pertamina.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ente202201078-sup-0001-SuppData-S1.pdf1.3 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. Brittman, G. W. P. Adhyaksa, E. C. Garnett, MRS Commun. 2015, 5, 7.
- 2 M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Prog. Photovoltaics: Res. Appl. 2022, 30, 687.
- 3 M. Ren, X. Qian, Y. Chen, T. Wang, Y. Zhao, J. Hazard. Mater. 2022, 426, 127848.
- 4 X. Yang, W. Wang, R. Ran, W. Zhou, Z. Shao, Energy Fuels 2020, 34, 10513.
- 5 W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, J. Tang, Nat. Photonics 2017, 11, 726.
- 6 Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, D. Xu, Angew. Chem., Int. Ed. 2019, 58, 7263.
- 7 Y. Zhang, Y. Song, Y. Lu, Z. Zhang, Y. Wang, Y. Yang, Q. Dong, Y. Yu, P. Qin, F. Huang, Small 2022, 18, 2201943.
- 8 F. Lv, T. Zhong, Y. Qin, H. Qin, W. Wang, F. Liu, W. Kong, Nanomaterials 2021, 11, 1361.
- 9 A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138.
- 10 H. C. Sansom, G. Longo, A. D. Wright, L. R. V. Buizza, S. Mahesh, B. Wenger, M. Zanella, M. Abdi-Jalebi, M. J. Pitcher, M. S. Dyer, T. D. Manning, R. H. Friend, L. M. Herz, H. J. Snaith, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2021, 143, 3983.
- 11 H. Yin, Y. Xian, Y. Zhang, W. Chen, X. Wen, N. U. Rahman, Y. Long, B. Jia, J. Fan, W. Li, Adv. Funct. Mater. 2020, 30, 2002225.
- 12 H. Q. Pham, R. J. Holmes, E. S. Aydil, L. Gagliardi, Nanoscale 2019, 11, 11173.
- 13 A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, https://doi.org/10.1126/science.aad4424.
- 14 J. Gebhardt, C. Elsässer, Phys. Status Solidi (B) 2022, 259, 2200124.
- 15 H. J. Jöbsis, V. M. Caselli, S. H. C. Askes, E. C. Garnett, T. J. Savenije, F. T. Rabouw, E. M. Hutter, Appl. Phys. Lett. 2021, 119, 131908.
- 16 J. A. Giesecke, M. Kasemann, W. Warta, J. Appl. Phys. 2009, 106, 014907.
- 17 H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205.
- 18 P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, S. W. Glunz, J. Appl. Phys. 2007, 101, 123110.
- 19 G. Longo, S. Mahesh, L. R. V. Buizza, A. D. Wright, A. J. Ramadan, M. Abdi-Jalebi, P. K. Nayak, L. M. Herz, H. J. Snaith, ACS Energy Lett. 2020, 5, 2200.
- 20 S. Brittman, S. Z. Oener, K. Guo, H. Āboliņš, A. F. Koenderink, E. C. Garnett, J. Mater. Chem. C 2017, 5, 8301.
- 21 Z. Wang, Q. Lin, B. Wenger, M. G. Christoforo, Y.-H. Lin, M. T. Klug, M. B. Johnston, L. M. Herz, H. J. Snaith, Nat Energy 2018, 3, 855.
- 22 F. Bonnín-Ripoll, Y. B. Martynov, R. G. Nazmitdinov, G. Cardona, R. Pujol-Nadal, Phys. Chem. Chem. Phys. 2021, 23, 26250.
- 23 K. K. Bass, L. Estergreen, C. N. Savory, J. Buckeridge, D. O. Scanlon, P. I. Djurovich, S. E. Bradforth, M. E. Thompson, B. C. Melot, Inorg. Chem. 2017, 56, 42.
- 24 R. Kentsch, M. Scholz, J. Horn, D. Schlettwein, K. Oum, T. Lenzer, J. Phys. Chem. C 2018, 122, 25940.
- 25 A. Maiti, A. J. Pal, J. Phys. Chem. C 2021, 125, 16324.
- 26 L. Schade, S. Mahesh, G. Volonakis, M. Zacharias, B. Wenger, F. Schmidt, S. Vajjala Kesava, D. Prabhakaran, M. Abdi-Jalebi, M. Lenz, F. Giustino, G. Longo, P. G. Radaelli, H. J. Snaith, ACS Energy Lett. 2021, 6, 1073.
- 27 D. J. Kubicki, M. Saski, S. MacPherson, K. Gałkowski, J. Lewiński, D. Prochowicz, J. J. Titman, S. D. Stranks, Chem. Mater. 2020, 32, 8129.
- 28 N. Pai, M. Chatti, S. O. Fürer, A. D. Scully, S. R. Raga, N. Rai, B. Tan, A. S. R. Chesman, Z. Xu, K. J. Rietwyk, S. S. Reddy, Adv. Energy Mater. 2022, 12, 2201482.
- 29 J. Leveillee, G. Volonakis, F. Giustino, J. Phys. Chem. Lett. 2021, 12, 4474.
- 30 A. Dey, A. F. Richter, T. Debnath, H. Huang, L. Polavarapu, J. Feldmann, ACS Nano 2020, 14, 5855.
- 31 M. Keshavarz, E. Debroye, M. Ottesen, C. Martin, H. Zhang, E. Fron, R. Küchler, J. A. Steele, M. Bremholm, J. V. D. Vondel, H. I. Wang, M. Bonn, M. B. J. Roeffaers, S. Wiedmann, J. Hofkens, Adv. Mater. 2020, 32, 2001878.
- 32 B. Xiao, Y. Tan, Z. Yi, Y. Luo, Q. Jiang, J. Yang, ACS Appl. Mater. Interfaces 2020, 13, 37027.
- 33 M. T. Sirtl, F. Ebadi, B. T. V. Gorkom, P. Ganswindt, R. A. J. Janssen, T. Bein, W. Tress, Adv. Opt. Mater. 2022, 9, 2100202.
- 34 B. Wang, N. Li, L. Yang, C. Dall’Agnese, A. K. Jena, T. Miyasaka, X.-F. Wang, J. Am. Chem. Soc. 2021, 143, 14877.
- 35 D. Zhao, C. Liang, B. Wang, T. Liu, Q. Wei, K. Wang, H. Gu, S. Wang, S. Mei, G. Xing, Energy Environ. Mater. 2022, 5, 1317.
- 36 M. Abdelsamie, K. Cruse, N. Tamura, G. Ceder, C. M. Sutter-Fella, J. Mater. Chem. A 2022, 10, 19868.
- 37 Z. Li, S. P. Senanayak, L. Dai, G. Kusch, R. Shivanna, Y. Zhang, D. Pradhan, J. Ye, Y.-T. Huang, H. Sirringhaus, R. A. Oliver, N. C. Greenham, R. H. Friend, R. L. Z. Hoye, Adv. Funct. Mater. 2021, 31, 2104981.
- 38 Y. She, Z. Hou, O. V. Prezhdo, W. Li, J. Phys. Chem. Lett. 2021, 12, 10581.
- 39 B. Wang, N. Li, L. Yang, C. Dall’Agnese, A. K. Jena, S.-I. Sasaki, T. Miyasaka, H. Tamiaki, X.-F. Wang, J. Am. Chem. Soc. 2021, 143, 2207.
- 40 W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
- 41 H. Sun, G. W. P. Adhyaksa, E. C. Garnett, Adv. Energy Mater. 2020, 10, 2000364.
- 42 C. W. Hansen, B. H. King, IEEE J. Photovoltaics 2019, 9, 538.
- 43 G. W. P. Adhyaksa, E. Johlin, E. C. Garnett, Nano Lett. 2017, 17, 5206.
- 44 O. Gunawan, S. R. Pae, D. M. Bishop, Y. Virgus, J. H. Noh, N. J. Jeon, Y. S. Lee, X. Shao, T. Todorov, D. B. Mitzi, B. Shin, Nature 2019, 575, 151.
- 45 H. C. Casey, B. I. Miller, E. Pinkas, J. Appl. Phys. 1973, 44, 1281.
- 46 L. Tarricone, N. Romeo, G. Sberveglieri, S. Mora, Sol. Energy Mater. 1982, 7, 343.
- 47 G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, J. Wu, Appl. Phys. Lett. 2010, 96, 022104.
- 48 L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, E. H. Sargent, Sol. Energy Mater. Sol. Cells 2016, 155, 155.
- 49 S. Lia, M. A. Lloyd, B. E. McCandless, J. B. Baxter, Sol. Energy Mater. Sol. Cells 2020, 205, 110255.
- 50 N. S. Ginsberg, W. A. Tisdale, Annu. Rev. Phys. Chem. 2020, 71, 1.
- 51 G. W. P. Adhyaksa, L. W. Veldhuizen, Y. Kuang, S. Brittman, R. E. I. Schropp, E. C. Garnett, Chem. Mater. 2016, 28, 5259.
- 52 Y. Liu, Y. Liu, L. K. Ono, G. Tong, T. Bu, H. Zhang, C. Ding, W. Zhang, Y. Qi, J. Am. Chem. Soc. 2021, 143, 19711.
- 53 K. Toprasertpong, A. Delamarre, Y. Nakano, J.-F. Guillemoles, M. Sugiyama, Phys. Rev. Appl. 2019, 11, 024029.
- 54 Y. Hu, G. W. P. Adhyaksa, G. DeLuca, A. N. Simonov, N. W. Duffy, E. Reichmanis, U. Bach, P. Docampo, T. Bein, E. C. Garnett, A. S. R. Chesman, A. N. Jumabekov, AIP Adv. 2019, 9, 125037.
- 55 G. F. Burkhard, E. T. Hoke, M. D. McGehee, Adv. Mat. 2010, 22, 3293.
- 56 E. M. Hutter, M. C. Gélvez-Rueda, D. Bartesaghi, F. C. Grozema, T. J. Savenije, ACS Omega 2018, 3, 11655.
- 57 H. Lei, D. Hardy, F. Gao, Adv. Funct. Mater. 2021, 31, 2105898.
- 58 J. A. Steele, P. Puech, M. Keshavarz, R. Yang, S. Banerjee, E. Debroye, C. W. Kim, H. Yuan, N. H. Heo, J. Vanacken, A. Walsh, J. Hofkens, M. B. J. Roeffaers, ACS Nano 2018, 12, 8081.
- 59 Z. Song, C. Li, L. Chen, Y. Yan, Adv. Mat. 2021, 34, 2106805.
- 60 Z. Zhang, Q. Sun, Y. Lu, F. Lu, X. Mu, S.-H. Wei, M. Sui, Nat. Commun. 2022, 13, 3397.