Investigation of the Performance and Recession Mechanisms of High-Nickel Ternary Lithium-Ion Batteries Under Artificial Aging Discharge Rates
Honghong Zheng
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Xinxi Li
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy testing, Guangzhou, 510006 P. R. China
Search for more papers by this authorZan Huang
School of Marine Engineering, Guangzhou Maritime Institute, Guangzhou, Guangdong, 510725 P. R. China
Search for more papers by this authorXiaoqing Yang
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorJianhui Deng
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorGuoqing Zhang
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorXianwen Tang
Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy testing, Guangzhou, 510006 P. R. China
Search for more papers by this authorHonghong Zheng
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Xinxi Li
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy testing, Guangzhou, 510006 P. R. China
Search for more papers by this authorZan Huang
School of Marine Engineering, Guangzhou Maritime Institute, Guangzhou, Guangdong, 510725 P. R. China
Search for more papers by this authorXiaoqing Yang
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorJianhui Deng
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorGuoqing Zhang
School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorXianwen Tang
Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy testing, Guangzhou, 510006 P. R. China
Search for more papers by this authorAbstract
Using a series of electrochemical performance tests and post-mortem analysis, herein, the performance and aging mechanisms of high-nickel lithium-ion batteries after accelerated aging at different discharge rates are investigated. The results show that the loss of lithium ions and the generation of a solid electrolyte interphase are the main causes for capacity fading at relatively low aging discharge rates. When the aging rate increases to 3 C, the performance of the battery deteriorates significantly, and structural damage becomes the main reason for attenuation, which means that the aging mechanism changed. It is expected that this investigation will improve the safety performance of the retired high-nickel ternary lithium batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202200600-sup-0001-SuppData-S1.pdf255.9 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Li, A. Khajepour, J. Song, Energy 2019, 182, 824.
- 2Q. Tao, L. Wang, C. Shi, J. Li, G. Chen, Z. Xue, J. Wang, S. Wang, H. Jin, Mater. Chem. Front. 2021, 5, 2607.
- 3J.-K. Yoo, Y. Oh, T. Park, K. E. Lee, M.-K. Um, J.-W. Yi, Energy Technol. 2019, 7, 1800845.
- 4M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Mater. 2021, 11 2103005.
- 5J. Deng, D. Cao, X. Yang, G. Zhang, Chem. Eng. J. 2022, 433, 133934.
- 6Y. Zhang, X. Sun, D. Cao, G. Gao, Z. Yang, H. Zhu, Y. Wang, Energy Storage Mater. 2021, 41, 505.
- 7X. Lai, Y. Huang, C. Deng, H. Gu, X. Han, Y. Zheng, M. Ouyang, Renewable Sustainable Energy Rev. 2021, 146, 111162.
- 8H. Zhang, J. Huang, R. Hu, D. Zhou, H. R. Khan, C. Ma, Energy 2020, 206, 118178.
- 9T.-O. Folayan, A. L. Lipson, J. L. Durham, H. Pinegar, D. Liu, L. Pan, Energy Technol. 2021, 9, 2100468.
- 10A. Garg, L. Yun, L. Gao, D. B. Putungan, J. Cleaner Prod. 2020, 275, 124152.
- 11Z. Milojevic, P. S. Attidekou, M. Muhammad, M. Ahmeid, S. Lambert, P. K. Das, J. Power Sources 2021, 506, 230242.
- 12Y. Gao, Y. Cai, C. Liu, J. Energy Storage 2022, 45, 103769.
- 13Z. Xu, J. Wang, P. D. Lund, Q. Fan, T. Dong, Y. Liang, J. Hong, J. Energy Storage 2020, 29, 101303.
- 14Y. Chen, A. Dou, Y. Zhang, Front. Mater. 2021, 8, 634667.
- 15S. Saxena, D. Roman, V. Robu, D. Flynn, M. Pecht, Energies 2021, 14, 723.
- 16S. Saxena, Y. Xing, D. Kwon, M. Pecht, Int. J. Electr. Power Energy Syst. 2019, 107, 438.
- 17Z. Qi, R. E. White, J. Power Sources 2008, 173, 990.
- 18Y. Zhang, C.-Y. Wang, X. Tang, J. Power Sources 2011, 196, 1513.
- 19G. Ning, B. Haran, B. N. Popov, J. Power Sources 2003, 117, 160.
- 20Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma, Y. Jiang, J. Power Sources 2017, 356, 103.
- 21E. Zhao, M. Chen, Z. Hu, D. Chen, L. Yang, X. Xiao, J. Power Sources 2017, 343, 345.
- 22L. Ji; Z. Guo; Y. Wu, Energy Technol. 2017, 5, 1702.
- 23S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura, J. Power Sources 2014, 260, 50.
- 24X. Li, Q. Wang, Y. Yang, J. Kang, Int. J. Electr. Power Energy Syst. 2019, 110, 819.
- 25J.-L. Cheng, X.-H. Li, Z.-X. Wang, H.-J. Guo, Trans. Nonferrous Met. Soc. China 2017, 27, 1602.
- 26J. Zhang, X. Yang, G. Zhang, Q. Huang, C. Xiao, C. Yang, Int. J. Energy Res. 2018, 42, 2448.
- 27W. Situ, X. Yang, X. Li, G. Zhang, M. Rao, C. Wei, Z. Huang, Int. J. Heat Mass Transfer 2017, 104, 743.
- 28Y. Lv, X. Yang, G. Zhang, Appl. Therm. Eng. 2020, 179, 115747.
- 29N. Wu, D. Yang, J. Liu, W. Tian, Electrochim. Acta 2012, 62, 91.
- 30T. Raj, A. A. Wang, C. W. Monroe, D. A. Howey, Batteries Supercaps 2020, 3, 1377.
- 31M. Fleischhammer, T. Waldmann, G. Bisle, B.-I. Hogg, M. Wohlfahrt-Mehrens, J. Power Sources 2015, 274, 432.
- 32D. Ouyang, J. Weng, M. Chen, J. Wang, J. Electrochem. Soc. 2019, 166, A3432.
- 33X. Feng, S. Zheng, D. Ren, X. He, L. Wang, H. Cui, X. Liu, C. Jin, F. Zhang, C. Xu, H. Hsu, S. Gao, T. Chen, Y. Li, T. Wang, H. Wang, M. Li, M. Ouyang, Appl. Energy 2019, 246, 53.
- 34M. Dubarry, B. Y. Liaw, J. Power Sources 2009, 194, 541.
- 35M. Dubarry, B. Y. Liaw, M.-S. Chen, S.-S. Chyan, K.-C. Han, W.-T. Sie, S.-H. Wu, J. Power Sources 2011, 196, 3420.
- 36I. Bloom, J. Christophersen, K. Gering, J. Power Sources 2005, 139, 304.
- 37I. Bloom, J. P. Christophersen, D. P. Abraham, K. L. Gering, J. Power Sources 2006, 157, 537.
- 38T. Guan, P. Zuo, S. Sun, C. Du, L. Zhang, Y. Cui, L. Yang, Y. Gao, G. Yin, F. Wang, J. Power Sources 2014, 268, 816.
- 39T. Guan, S. Sun, Y. Gao, C. Du, P. Zuo, Y. Cui, L. Zhang, G. Yin, Appl. Energy 2016, 177, 1.
- 40L. Yang, X. Cheng, Y. Ma, S. Lou, Y. Cui, T. Guan, G. Yin, J. Electrochem. Soc. 2013, 160, A2093.
- 41B. Horstmann, F. Single, A. Latz, Curr. Opin. Electrochem. 2019, 13, 61.
- 42S. Sun, T. Guan, B. Shen, K. Leng, Y. Gao, X. Cheng, G. Yin, Electrochim. Acta 2017, 237, 248.
- 43S. Sun, T. Guan, X. Cheng, P. Zuo, Y. Gao, C. Du, G. Yin, RSC Adv. 2018, 8, 25695.
- 44P. Liu, J. Wang J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, J. Electrochem. Soc. 2010, 157, A499.
- 45J. Li, R. Klöpsch, M. C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, J. Power Sources 2011, 196, 4821.