Electrochemical and Physical Properties of Imidazolium Chloride Ionic Liquids with Pyrrolidinium or Piperidinium Cation Addition and Their Application in Dual-Ion Batteries
Zichuan Lv
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorJunhui Sun
State Grid Qingyun Power Supply Company, Dezhou, 253700 China
Search for more papers by this authorShuai Zhou
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorYinghui Bian
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorHui Chen
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorCorresponding Author
Yuxia Li
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorCorresponding Author
Meng-Chang Lin
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorZichuan Lv
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorJunhui Sun
State Grid Qingyun Power Supply Company, Dezhou, 253700 China
Search for more papers by this authorShuai Zhou
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorYinghui Bian
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorHui Chen
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorCorresponding Author
Yuxia Li
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorCorresponding Author
Meng-Chang Lin
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorAbstract
Herein, nonflammable ionic liquid (IL) electrolytes are prepared for dual-ion batteries (DIBs) by mixing 1-methyl-1-propylpyrrolidinium chloride (P13Cl) or 1-butyl-1-methylpiperidinium chloride (PP14Cl) with 1,2-dimethyl-3-propylimidazolium chloride (DMPICl)/aluminum chloride (AlCl3) to form mixed IL electrolytes. Then, viscosity, ionic conductivity, thermal stability, and electrochemical limits measurements are recorded to reveal the fundamental properties of the mixed IL electrolytes for DIBs, which are not reported previously. As compared with DMPICl/AlCl3 (=1 in mole ratio) electrolyte, using electrolyte with addition of P13Cl or PP14Cl (e.g., 0.63 mole to replace DMPICl), the DIB with graphite electrodes show better electrochemical stability. With the addition of 0.63 P13Cl, the Coulombic efficiency of the DIB reaches up to 96.7% (≈91% for DMPICl/AlCl3); however, specific capacity loss should be considered. In general, ideas for designing higher energy density electrochemical energy storage devices are provided.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000432-sup-0001-SuppData-S1.docx442.7 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wu, J. Zhu, L. Huang, Carbon 2019, 143, 610.
- 2H.-J. Liao, Y.-M. Chen, Y.-T. Kao, J.-Y. An, Y.-H. Lai, D.-Y. Wang, J. Phys. Chem. C 2017, 121, 24463.
- 3a) S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang, R. Santhanam, J. Power Sources 2009, 188, 564; b) A. M. Haregewoin, A. S. Wotango, B.-J. Hwang, Energy Environ. Sci. 2016, 9, 1955.
- 4a) K. Ui, S. Kikuchi, Y. Kadoma, N. Kumagai, S. Ito, J. Power Sources 2009, 189, 224; b) M.-Y. Cheng, B.-J. Hwang, J. Power Sources 2010, 195, 4977.
- 5a) C.-C. Chang, Y.-C. Lee, H.-J. Liao, Y.-T. Kao, J.-Y. An, D.-Y. Wang, ACS Sustainable Chem. Eng. 2019, 7, 2860; b) K. Ui, K. Yamamoto, K. Ishikawa, T. Minami, K. Takeuchi, M. Itagaki, K. Watanabe, N. Koura, J. Power Sources 2008, 183, 347.
- 6S. Rothermel, P. Meister, G. Schmuelling, O. Fromm, H.-W. Meyer, S. Nowak, M. Winter, T. Placke, Energy Environ. Sci. 2014, 7, 3412.
- 7F. Zhang, B. Ji, X. Tong, M. Sheng, X. Zhang, C.-S. Lee, Y. Tang, Adv. Mater. Interfaces 2016, 3, 1600605.
- 8a) D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232; b) J. F. Wishart, Energy Environ. Sci. 2009, 2, 956; c) V. L. Martins, R. M. Torresi, Curr. Opin. Electrochem. 2018, 9, 26.
- 9R. T. Carlin, J. Electrochem. Soc. 1994, 141, L73.
- 10a) J. Fan, Z. Zhang, Y. Liu, A. Wang, L. Li, W. Yuan, Chem. Commun. 2017, 53, 6891; b) Z. Li, J. Liu, J. Li, F. Kang, F. Gao, Carbon 2018, 138, 52.
- 11A. Wang, W. Yuan, J. Fan, L. Li, Energy Technol. 2018, 6, 2172.
- 12H. Yang, X. Shi, T. Deng, T. Qin, L. Sui, M. Feng, H. Chen, W. Zhang, W. Zheng, ChemElectroChem 2018, 5, 3612.
- 13Y. Huang, R. Xiao, Z. Ma, W. Zhu, ChemElectroChem 2019, 6, 4681.
- 14T. Placke, O. Fromm, S. Rothermel, G. Schmuelling, P. Meister, H. W. Meyer, S. Passerini, M. Winter, ECS Trans. 2013, 50, 59.
10.1149/05024.0059ecst Google Scholar
- 15A. Lewandowski, A. Świderska-Mocek, J. Power Sources 2009, 194, 601.
- 16Z. Lv, M. Han, J. Sun, L. Hou, H. Chen, Y. Li, M.-C. Lin, J. Power Sources 2019, 418, 233.
- 17G. Zhu, M. Angell, C.-J. Pan, M.-C. Lin, H. Chen, C.-J. Huang, J. Lin, A. J. Achazi, P. Kaghazchi, B.-J. Hwang, H. Dai, RSC Adv. 2019, 9, 11322.
- 18M. Drai, A. Mostefai, A. Paolone, B. Haddad, E. Belarbi, D. Villemin, S. Bresson, O. Abbas, Y. Chaker, M. Rahmouni, J. Chem. Sci. 2017, 129, 707.
- 19K. Fujii, S. Seki, S. Fukuda, T. Takamuku, S. Kohara, Y. Kameda, Y. Umebayashi, S.-i. Ishiguro, J. Mol. Liquids 2008, 143, 64.
- 20a) Y. Shimizu, K. Fujii, M. Imanari, K. Nishikawa, J. Phys. Chem. B 2015, 119, 12552; b) L. J. A. Siqueira, V. R. L. Constantino, F. F. Camilo, R. M. Torresi, M. L. A. Temperini, M. C. C. Ribeiro, C. M. S. Izumi, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 122, 469.
- 21M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 2006, 51, 5567.
- 22P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168.
- 23a) A. Matic, B. Scrosati, MRS Bull. 2013, 38, 533; b) J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson, J. F. Brennecke, J. Chem. Thermodyn. 2005, 37, 559.
- 24a) A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J. Phys. Chem. 1984, 88, 2614;
b) P. Wasserscheid, W. Keim, Angewa. Chemie Int. Ed. 2000, 39, 3772.
10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 25M. Ara, T. Meng, G.-A. Nazri, S. O. Salley, K. Y. Simon Ng, J. Electrochem. Soc. 2014, 161, A1969.
- 26a) J. N. Barisci, G. G. Wallace, D. R. MacFarlane, R. H. Baughman, Electrochem. Commun. 2004, 6, 22; b) D. R. McFarlane, J. Sun, J. Golding, P. Meakin, M. Forsyth, Electrochim. Acta 2000, 45, 1271; c) A. Bhattacharjee, P. J. Carvalho, J. A. P. Coutinho, Fluid Phase Equilib. 2014, 375, 80; d) F. F. C. Bazito, Y. Kawano, R. M. Torresi, Electrochim. Acta 2007, 52, 6427; e) Z.-B. Zhou, H. Matsumoto, K. Tatsumi, Chem. – A Eur. J. 2006, 12, 2196.
- 27J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156.
- 28Y. Cao, T. Mu, Ind. Eng. Chem. Res. 2014, 53, 8651.
- 29a) C. S. Stefan, D. Lemordant, P. Biensan, C. Siret, B. Claude-Montigny, J. Therm. Anal. Calorim. 2010, 102, 685; b) J. Salminen, N. Papaiconomou, R. A. Kumar, J.-M. Lee, J. Kerr, J. Newman, J. M. Prausnitz, Fluid Phase Equilib. 2007, 261, 421.
- 30P. R. Gifford, J. Electrochem. Soc. 1987, 134, 610.
- 31K. Matsumoto, R. Hagiwara, R. Yoshida, Y. Ito, Z. Mazej, P. Benkič, B. Žemva, O. Tamada, H. Yoshino, S. Matsubara, Dalton Trans. 2004, 144.
- 32G. B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, S. Passerini, Electrochim. Acta 2009, 54, 1325.
- 33Q. Li, J. Jiang, G. Li, W. Zhao, X. Zhao, T. Mu, Sci. China Chem. 2016, 59, 571.
- 34Y. Bian, L. Su, Z. Yu, Z. Lv, H. Chen, Y. Zhou, C. Meng, H. Du, M. Cai, H. Cao, M.-C. Lin, Electrochim. Acta 2020, 332, 135188.
- 35T. Placke, O. Fromm, S. F. Lux, P. Bieker, S. Rothermel, H.-W. Meyer, S. Passerini, M. Winter, J. Electrochem. Soc. 2012, 159, A1755.
- 36R. Hou, B. Liu, Y. Sun, L. Liu, J. Meng, M. D. Levi, H. Ji, X. Yan, Nano Energy 2020, 72, 104728.
- 37K. Share, A. P. Cohn, R. E. Carter, C. L. Pint, Nanoscale 2016, 8, 16435.
- 38M. Balabajew, H. Reinhardt, N. Bock, M. Duchardt, S. Kachel, N. Hampp, B. Roling, Electrochim. Acta 2016, 211, 679.
- 39A. S. Childress, P. Parajuli, J. Zhu, R. Podila, A. M. Rao, Nano Energy 2017, 39, 69.