Porous Bamboo-Derived Carbon as Selenium Host for Advanced Lithium/Sodium–Selenium Batteries
Chenhui Ma
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorHelei Wang
Department of Gastrointestinal Surgery, the First Hospital of Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorXiaosen Zhao
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorXin Wang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorYongqiang Miao
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLu Cheng
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Chunzhong Wang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLei Wang
Key Laboratory of Eco-Chemical Engineering (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorHuijuan Yue
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Dong Zhang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorChenhui Ma
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorHelei Wang
Department of Gastrointestinal Surgery, the First Hospital of Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorXiaosen Zhao
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorXin Wang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorYongqiang Miao
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLu Cheng
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Chunzhong Wang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLei Wang
Key Laboratory of Eco-Chemical Engineering (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorHuijuan Yue
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Dong Zhang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Key Engineering Laboratory of New Energy Materials and Technologies, College of Physics, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorAbstract
Selenium (Se) has received extensive attention as the most competitive cathode material for next generation high-energy batteries. However, the shuttle effect of polyselenide and volume change lead to inferior electrochemical properties. To solve these issues, a porous bamboo-derived carbon (PBC) with abundant meso/micropores is prepared as a framework to effectively encapsulate elemental selenium. For Li–Se batteries, Se/PBC electrode delivers an outstanding capacity of 509 mAh g−1 after 200 cycles at 0.2 C (1 C = 675 mA g−1) with a low capacity fade of 0.036% per cycle. The Se/PBC composite also reveals a satisfied electrochemical performance for Na–Se batteries with an excellent capacity of 409 mAh g−1 after 200 cycles at 0.2 C. Moreover, Se/PBC electrode also presents excellent long-term cycle performance and rate performance at 15 C for Li–Se batteries and 10 C for Na–Se batteries. The outstanding properties are attributed to the specific 3D structure and high conductivity of PBC, which significantly inhibits the shuttle effect and enhances the reaction kinetics. Herein, not only the great application potential of bamboo in energy storage systems is demonstrated, but also an effective approach and low-cost strategy for improving the performance of lithium/sodium–selenium batteries is offered.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901445-sup-0001-SuppData-S1.docx5.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Li, J. Lu, Z. W. Chen, K. Amine, Adv. Mater. 2018, 30, 180056.
- 2W. Dong, H. Chen, F. J. Xia, W. B. Yu, J. P. Song, S. J. Wu, Z. Deng, Z. Y. Hu, T. Hasan, Y. Li, H. G. Wang, L. H. Chen, B. L. Su, J. Mater. Chem. A 2018, 6, 22790.
- 3A. Eftekhari, Sustainable Energy Fuels 2017, 1, 14.
- 4J. Jin, X. C. Tian, N. Srikanth, L. B. Kong, K. Zhou, J. Mater. Chem. A 2017, 5, 10110.
- 5Y. Yao, M. L. Chen, R. Xu, S. F. Zeng, H. Yang, S. F. Ye, F. F. Liu, X. J. Wu, Y. Yu, Adv. Mater. 2018, 30, 1805234.
- 6J. P. Song, L. Wu, W. D. Dong, C. F. Li, L. H. Chen, X. Dai, C. Li, H. Chen, W. Zou, W. B. Yu, Z. Y. Hu, J. Liu, H. E. Wang, Y. Li, B. L. Su, Nanoscale 2019, 11, 6970.
- 7C. P. Yang, Y. X. Yin, Y. G. Guo, J. Phys. Chem. Lett. 2015, 6, 256.
- 8H. Zhang, D. D. Jia, Z. W. Yang, F. Q. Yu, Y. L. Su, D. J. Wang, Q. Shen, Carbon 2017, 122, 547.
- 9L. X. Zeng, X. Chen, R. P. Liu, L. X. Lin, C. Zheng, L. H. Xu, F. Q. Luo, Q. R. Qian, Q. H. Chen, M. D. Wei, J. Mater. Chem. A 2017, 5, 22997.
- 10X. L. Huang, Q. J. Xu, W. Gao, T. T. Yang, R. M. Zhan, J. H. Deng, B. S. Guo, M. L. Tao, H. D. Liu, M. W. Xu, J. Colloid Interface Sci. 2019, 539, 326.
- 11X. S. Zhao, L. C. Yin, T. Zhang, M. Zhang, Z. B. Fang, C. Z. Wang, Y. J. Wei, G. Chen, D. Zhang, Z. H. Sun, F. Li, Nano Energy 2018, 49, 137.
- 12J. Yang, H. C. Gao, D. J. Ma, J. S. Zou, Z. Lin, X. W. Kang, S. W. Chen, Electrochim. Acta 2018, 264, 341.
- 13X. L. Huang, W. Wang, J. H. Deng, W. Gao, D. Y. Liu, Q. R. Ma, M. W. Xu, Inorg. Chem. Front. 2019, 6, 2118.
- 14G. D. Park, J. H. Kim, J. K. Lee, Y. C. Kang, J. Mater. Chem. A 2018, 6, 21410.
- 15B. Kalimuthu, K. Nallathamby, ACS Appl. Mater. Interfaces 2017, 9, 26756.
- 16H. D. Shi, X. J. Zhao, Z. S. Wu, Y. F. Dong, P. F. Lu, J. Chen, W. C. Ren, H. M. Cheng, X. H. Bao, Nano Energy 2019, 60, 743.
- 17B. W. Wang, J. J. Zhang, Z. G. Xia, M. Q. Fan, C. J. Lv, G. L. Tian, X. N. Li, Nano Res. 2018, 11, 2460.
- 18R. P. Luo, W. Q. Lyu, K. C. Wen, W. D. He, J. Electron. Sci. Technol. 2018, 16, 57.
- 19B. B. Yuan, X. Z. Sun, L. C. Zeng, Y. Yu, Q. S. Wang, Small 2018, 14, 1703252.
- 20R. Mukkabla, S. Deshagani, M. Deepa, S. M. Shivaprasad, P. Ghosal, Electrochim. Acta 2018, 283, 63.
- 21G. Singh, K. S. Lakhi, S. Sil, S. V. Bhosale, I. Kim, K. Albahily, A. Vinu, Carbon 2019, 148, 164.
- 22Y. S. Yun, M. H. Park, S. J. Hong, M. E. Lee, Y. W. Park, H.-J. Jin, ACS Appl. Mater. Interfaces 2015, 7, 3684.
- 23P. Zhao, M. H. A. Shiraz, H. Z. Zhu, Y. H. Liu, L. Tao, J. Liu, Electrochim. Acta 2019, 325, 134931.
- 24M. J. Kim, J. E. Park, S. J. Kim, M. S. Lim, A. H. Jin, O. H. Kim, M. J. Kim, K. S. Lee, J. Kim, S. S. Kim, Y. H. Cho, Y. E. Sung, ACS Catal. 2019, 9, 3389.
- 25C. B. Jin, O. W. Sheng, J. M. Luo, H. D. Yuan, C. Fang, W. K. Zhang, H. Huang, Y. P. Gan, Y. Xia, C. Liang, J. Zhang, X. Y. Tao, Nano Energy 2017, 37, 177.
- 26R. Y. Fang, Y. Xia, C. Liang, X. P. He, H. Huang, Y. P. Gan, J. Zhang, X. Y. Tao, W. K. Zhang, J. Mater. Chem. A 2018, 6, 24773.
- 27H. L. Lv, R. P. Chen, X. Q. Wang, Y. Hu, Y. R. Wang, T. Chen, L. B. Ma, G. Y. Zhu, J. Liang, Z. X. Tie, J. Liu, Z. Jin, ACS Appl. Mater. Interfaces 2017, 9, 25232.
- 28D. K. Lee, S. J. Kim, Y. J. Kim, H. Choi, D. W. Kim, H. J. Jeon, C. W. Ahn, J. W. Lee, H. T. Jung, Adv. Mater. Interfaces 2019, 6, 1801992.
- 29S. F. Zhang, W. P. Wang, S. Xin, H. Ye, Y. X. Yin, Y. G. Guo, ACS Appl. Mater. Interfaces 2017, 9, 8759.
- 30X. F. Wang, X. P. Fang, X. W. Guo, Z. X. Wang, L. Q. Chen, Electrochim. Acta 2013, 97, 238.
- 31G. W. Huang, H. Liu, S. P. Wang, X. Yang, B. H. Liu, H. Z. Chen, M. S. Xu, J. Mater. Chem. A 2015, 3, 24128.
- 32J. J. Zhou, J. Yang, Z. X. Xu, T. Zhang, Z. Y. Chen, J. L. Wang, J. Mater. Chem. A 2017, 5, 9350.
- 33X. N. Li, J. W. Liang, Z. G. Hou, W. Q. Zhang, Y. Wang, Y. C. Zhu, Y. T. Qian, Adv. Funct. Mater. 2015, 25, 5229.
- 34J. R. He, Y. F. Chen, W. Q. Lv, K. C. Wen, P. J. Li, Z. G. Wang, W. L. Zhang, W. Qin, W. D. He, ACS Energy Lett. 2016, 1, 16.
- 35H. Zhang, F. Q. Yu, W. P. Kang, Q. Shen, Carbon 2015, 95, 354.
- 36L. Zhou, H. Cao, S. Q. Zhu, L. R. Hou, C. Z. Yuan, Green Chem. 2015, 17, 2373.
- 37D. B. Babu, K. Ramesha, Electrochim. Acta 2016, 219, 295.
- 38Z. Q. Li, L. W. Yin, Nanoscale 2015, 7, 9597.
- 39J. J. Zhang, Y. H. Xu, L. Fan, Y. C. Zhu, J. W. Liang, Y. T. Qian, Nano Energy 2015, 13, 592.
- 40Q. F. Cai, Y. Y. Li, L. Wang, Q. W. Li, J. Xu, B. Gao, X. M. Zhang, K. F. Huo, P. K. Chu, Nano Energy 2017, 32, 1.
- 41Z. Li, L. X. Yuan, Z. Q. Yi, Y. Liu, Y. H. Huang, Nano Energy 2014, 9, 229.
- 42Y. J. Cui, A. Abouimrane, C. J. Sun, Y. Ren, K. Amine, Chem. Commun. 2014, 50, 5576.
- 43J. J. Zhang, L. Fan, Y. C. Zhu, Y. H. Xu, J. W. Liang, D. H. Wei, Y. T. Qian, Nanoscale 2014, 6, 12952.
- 44C. Luo, Y. H. Xu, Y. J. Zhu, Y. H. Liu, S. Y. Zheng, Y. Liu, A. Langrock, C. S. Wang, ACS Nano 2013, 7, 8003.
- 45L. C. Zeng, X. Wei, J. Q. Wang, Y. Jiang, W. H. Li, Y. Yu, J. Power Sources 2015, 281, 461.
- 46R. Mukkabla, S. Deshagani, P. Meduri, M. Deepa, P. Ghosal, ACS Energy Lett. 2017, 2, 1288.
- 47L. L. Liu, Y. Y. Hou, Y. Q. Yang, M. X. Li, X. W. Wang, Y. P. Wu, RSC Adv. 2014, 4, 9086.
- 48B. Zhang, M. Xiao, S. J. Wang, D. M. Han, S. Q. Song, G. H. Chen, Y. Z. Meng, ACS Appl. Mater. Interfaces 2014, 6, 13174.
- 49B. Qi, X. S. Zhao, S. G. Wang, K. Chen, Y. J. Wei, G. Chen, Y. Gao, D. Zhang, Z. H. Sun, F. Li, J. Mater. Chem. A 2018, 6, 14359.
- 50Q. Q. Li, H. G. Liu, Z. P. Yao, J. P. Cheng, T. H. Li, Y. Li, C. Wolverton, J. S. Wu, V. P. Dravid, ACS Nano 2016, 10, 8788.
- 51L. Wang, X. M. Zhang, L. Deng, J. F. Tang, H. Q. Deng, W. Y. Hu, Z. X. Liu, ACS Appl. Mater. Interfaces 2019, 11, 4995.
- 52J. Ding, H. Zhou, H. L. Zhang, L. Y. Tong, D. Mitlin, Adv. Energy Mater. 2018, 8, 1701918.