Transforming Ni-Coagulated Polyferriertic Sulfate Sludge into Porous Heteroatom-Doped Carbon-Supported Transition Metal Phosphide: An Efficient Catalyst for Oxygen Evolution Reaction
Ge Li
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorTonghe Zhu
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorYali Ye
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorSheng Liang
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorWeijian Duan
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorWei Hong
Guangdong Shunde Institute of Environmental Science, Foshan, 528000 P. R. China
Search for more papers by this authorCorresponding Author
Chunhua Feng
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorGe Li
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorTonghe Zhu
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorYali Ye
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorSheng Liang
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorWeijian Duan
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorWei Hong
Guangdong Shunde Institute of Environmental Science, Foshan, 528000 P. R. China
Search for more papers by this authorCorresponding Author
Chunhua Feng
The Key Labaoratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorAbstract
The transformation of sludge waste from wastewater treatment plants into functional materials is an attractive prospect. Herein, the successful synthesis of mesoporous heteroatom-doped carbon-supported NiFe phosphide (FeNi2P@HDC) from Ni-coagulated iron sludge by forming a biogenic precursor via incubation of the sludge with Shewanella oneidensis MR-1, followed by a simple pyrolysis process, is reported. The incubation results in the formation of a solid chemical bonding between bacteria and the surface of the newly formed mineral, which is beneficial for producing a desirable microstructure and chemical composition. The as-synthesized FeNi2P@HDC shows a superior oxygen evolution reaction (OER) performance, evident from the data, including a low overpotential of 280 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 56 mV dec−1 under alkaline conditions, which is comparable with that of the majority of the reported Ni and/or Fe phosphide catalysts in the literature and better than the state-of-the-art RuO2 catalyst. Such a good performance seems to be the result of the synergistic effect of the intrinsic activity of FeNi2P nanoparticles and the strong interaction between FeNi2P and heteroatom-doped graphene-like carbon support.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900995-sup-0001-SuppData-S1.docx2.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. G. El Samrani, B. S. Lartiges, F. Villieras, Water Res. 2008, 42, 951; b) T. A. Kurniawan, G. Y. S. Chan, W.-H. Lo, S. Babel, Chem. Eng. J. 2006, 118, 83; c) F. Fu, Q. Wang, J. Environ. Manage. 2011, 92, 407.
- 2a) K. Yang, Y. Zhu, R. Shan, Y. Shao, C. Tian, J. Environ. Manage. 2017, 189, 58; b) M. C. Samolada, A. A. Zabaniotou, Waste Manage. 2014, 34, 411; c) S. Babel, D. del Mundo Dacera, Waste Manage. 2006, 26, 988.
- 3a) B. Dong, X. Liu, L. Dai, X. Dai, Bioresour. Technol. 2013, 131, 152; b) Y. Liu, L. Ma, Y. Li, L. Zheng, Chemosphere 2007, 67, 1025.
- 4a) Y. Xu, Y. Yan, T. He, K. Zhan, J. H. Yang, B. Zhao, K. Qi, B. Y. Xia, Carbon 2019, 145, 201; b) C. H. Tian, Z. C. Liu, Y. Q. Wu, X. H. Lu, T. Y. Yang, X. Tao, Y. Qing, ChemElectroChem 2019, 6, 3303; c) P. He, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 3897; d) J. Ren, Z. Hu, C. Chen, Y. Liu, Z. Yuan, J. Energ. Chem. 2017, 26, 1196.
- 5a) Y. Yang, X. B. Luan, X. P. Dai, X. Zhang, H. Y. Qiao, H. H. Zhao, J. X. Yong, L. Yu, J. H. Han, J. Zhang, Electrochim. Acta 2019, 309, 57; b) J. Xie, J. Xin, R. Wang, X. Zhang, F. Lei, H. Qu, P. Hao, G. Cui, B. Tang, Y. Xie, Nano Energy 2018, 53, 74; c) P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, X. Sun, Adv. Energy Mater. 2018, 8, 1703341.
- 6a) Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, Adv. Func. Mater. 2017, 27, 1702513; b) J. Wang, X. Ma, F. Qu, A. M. Asiri, X. Sun, Inorg. Chem. 2017, 56, 1041; c) H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang, J. Qiu, Nano Energy 2017, 34, 472; d) X. Xiao, C. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, Energy Environ. Sci. 2017, 10, 893.
- 7a) X. Cheng, J. Zheng, J. Li, X. Luo, ChemElectroChem 2019, 6, 2195; b) X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Energ. Environ. Sci. 2016, 9, 123; c) Z. Zhou, N. Mahmood, Y. Zhang, L. Pan, L. Wang, X. Zhang, J. Zou, J. Energ. Chem. 2017, 26, 1223.
- 8Z. Zhang, Y. Qin, M. Dou, J. Ji, F. Wang, Nano Energy 2016, 30, 426.
- 9a) X. Ma, Z. Lei, W. Feng, Y. Ye, C. Feng, Carbon 2017, 123, 481; b) Y. Ye, W. Duan, X. Yi, Z. Lei, G. Li, C. Feng, J. Power Sources 2019, 435, 226770; c) W. Feng, Y. Ye, Z. Lei, C. Feng, C. Wei, S. Chen, Carbon 2018, 134, 53.
- 10C. M. Hansel, S. G. Benner, S. Fendorf, Environ. Sci. Technol. 2005, 39, 7147.
- 11W. Yan, H. Wang, C. Jing, Environ. Sci. Technol. 2016, 50, 4343.
- 12a) J. K. Fredrickson, J. M. Zachara, R. K. Kukkadapu, Y. A. Gorby, S. C. Smith, C. F. Brown, Environ. Sci. Technol. 2001, 35, 703; b) J. M. Zachara, J. K. Fredrickson, S. C. Smith, P. L. Gassman, Geochim. Cosmochim. Acta 2001, 65, 75.
- 13a) S. J. Parikh, J. Chorover, Langmuir 2006, 22, 8492; b) E. J. Elzinga, J.-H. Huang, J. Chorover, R. Kretzschmar, Environ. Sci. Technol. 2012, 46, 12848.
- 14A. Omoike, J. Chorover, K. D. Kwon, J. D. Kubicki, Langmuir 2004, 20, 11108.
- 15a) S. Liu, W. Bian, Z. Yang, J. Tian, C. Jin, M. Shen, Z. Zhou, R. Yang, J. Mater. Chem. A 2014, 2, 18012; b) S. Kalathil, K. P. Katuri, A. S. Alazmi, S. Pedireddy, N. Kornienko, P. M. F. J. Costa, P. E. Saikaly, Chem. Mater. 2019, 31, 3686.
- 16X. Fan, F. Kong, A. Kong, A. Chen, Z. Zhou, Y. Shan, ACS Appl. Mater. Interfaces 2017, 9, 32840.
- 17Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen, D. Mitlin, Energ. Environ. Sci. 2013, 6, 871.
- 18M. Qian, S. Cui, D. Jiang, L. Zhang, P. Du, Adv. Mater. 2017, 29, 1704075.
- 19H. Liang, A. N. Gandi, C. Xia, M. N. Hedhili, D. H. Anjum, U. Schwingenschlögl, H. N. Alshareef, ACS Energy Lett. 2017, 2, 1035.
- 20Z.-Y. Wu, X.-X. Xu, B.-C. Hu, H.-W. Liang, Y. Lin, L.-F. Chen, S.-H. Yu, Angew. Chem. Int. Ed. 2015, 54, 8179.
- 21R. Gao, L. Pan, H. Wang, X. Zhang, L. Wang, J.-J. Zou, ACS Catal. 2018, 8, 8420.
- 22a) J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin, P. Strasser, R. Yang, J. Mater. Chem. A 2013, 1, 9889; b) Y. Du, Y. Han, X. Huai, Y. Liu, C. Wu, Y. Yang, L. Wang, Int. J. Hydrog. Energy 2018, 43, 22226.
- 23J. Xu, J. Li, D. Xiong, B. Zhang, Y. Liu, K.-H. Wu, I. Amorim, W. Li, L. Liu, Chem. Sci. 2018, 9, 3470.
- 24a) C. Xuan, J. Wang, W. Xia, Z. Peng, Z. Wu, W. Lei, K. Xia, H. L. Xin, D. Wang, ACS Appl. Mater. Interfaces. 2017, 9, 26134; b) W. Xi, G. Yan, Z. Lang, Y. Ma, H. Tan, H. Zhu, Y. Wang, Y. Li, Small 2018, 14, 1802204.
- 25Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, Nano Energy 2018, 47, 257.
- 26a) Z. Liu, X. Yu, H. Yu, H. Xue, L. Feng, ChemSusChem 2018, 11, 2703; b) S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 13567; c) H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem. Int. Edit. 2017, 56, 12566.
- 27a) S. Ibraheem, S. Chen, J. Li, W. Li, X. Gao, Q. Wang, Z. Wei, ACS Appl. Mater. Interfaces. 2019, 11, 699; b) M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai, L. Lu, ACS Appl. Mater. Interfaces 2015, 7, 1207.
- 28L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744.
- 29a) Z. Wu, Z. Zou, J. Huang, F. Gao, J. Catal. 2018, 358, 243; b) Y.-F. Li, A. Selloni, ACS Catal. 2014, 4, 1148; c) T. Kou, S. Wang, J. L. Hauser, M. Chen, S. R. J. Oliver, Y. Ye, J. Guo, Y. Li, ACS Energy Lett. 2019, 4, 622.
- 30a) O. Diaz-Morales, I. Ledezma-Yanez, M. T. M. Koper, F. Calle-Vallejo, ACS Catal. 2015, 5, 5380; b) D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305; c) F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 2017, 29, 1606570.
- 31a) S. Wang, J. An, Y. Wan, Q. Du, X. Wang, X. Cheng, N. Li, Environ. Sci. Technol. 2018, 52, 13863; b) T. Pümpel, L. E. Macaskie, J. A. Finlay, L. Diels, M. Tsezos, Biometals 2003, 16, 567.