Optimizing the Crystallite Structure of Lignin-Based Nanospheres by Resinification for High-Performance Sodium-Ion Battery Anodes
Yang Zhang
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorYouyu Zhu
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorJizong Zhang
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorShuai Sun
Department of Chemical Engineering, Chengde Petroleum College, Chengde, 067000 P. R. China
Search for more papers by this authorCorresponding Author
Chengyang Wang
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorMingming Chen
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorJingxuan Zeng
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorYang Zhang
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorYouyu Zhu
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorJizong Zhang
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorShuai Sun
Department of Chemical Engineering, Chengde Petroleum College, Chengde, 067000 P. R. China
Search for more papers by this authorCorresponding Author
Chengyang Wang
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorMingming Chen
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorJingxuan Zeng
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorAbstract
Sodium-ion batteries are expected to be an alternative to lithium-ion batteries because of the inexpensive raw materials. However, the anode materials still face problems of low capacity and initial coulomb efficiency, even for hard carbons that are expected to have commercial applications. Herein, a resin nanosphere derived from lignin through double solvent evaporation and resinification is reported. Benefiting from the phenol–formaldehyde condensation to form linear polymers, the samples possess a large microcrystalline size, moderate interlayer distance, and defect sites in the turbostratic structure, which enhance the sodium-storage capacity. The carbonized lignin-based resin spheres (CLRSs) exhibit promising electrochemical performance with a comparable reversible capacity of 347 mAh g−1 and high initial columbic efficiency (ICE) of 74%. Furthermore, the sodium-storage mechanism for the obtained samples is also investigated by analyzing the relationship between the structure optimization and electrochemical performance.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900694-sup-0001-SuppData-S1.docx5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. Zhu, F. Shen, W. Luo, S. Zhu, M. Zhao, B. Natarajan, J. Dai, L. Zhou, X. Ji, R. S. Yassar, T. Li, L. Hu, Nano Energy 2017, 33, 37; b) Y. Li, Y. Hu, M. M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. 2016, 6, 1600659; c) Y. Li, Y. Hu, H. Li, L. Chen, X. Huang, J. Mater. Chem. A 2016, 4, 96.
- 2a) R. Janot, J. Conard, D. Guérard, Carbon 2001, 39, 1931; b) Q. Li, Y. Zhu, P. Zhao, C. Yuan, M. Chen, C. Wang, Carbon 2018, 129, 85.
- 3P. Ge, M. Fouletier, Solid State Ionics 1988, 28, 1172.
- 4a) Z. Li, L. Ma, T. W. Surta, C. Bommier, Z. Jian, Z. Xing, W. F. Stickle, M. Dolgos, K. Amine, J. Lu, T. Wu, X. Ji, ACS Energy Lett. 2016, 1, 395; b) H. Li, F. Shen, W. Luo, J. Dai, X. Han, Y. Chen, Y. Yao, H. Zhu, K. Fu, E. Hitz, L. Hu, ACS Appl. Mater. Interfaces 2016, 8, 2204; c) R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado, Electrochem. Solid-State Lett. 2005, 8, A222.
- 5a) F. Zhang, Y. Yao, J. Wan, D. Henderson, X. Zhang, L. Hu, ACS Appl. Mater. Interfaces 2017, 9, 391; b) P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, Adv. Energy Mater. 2018, 8, 1702434; c) Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y. Hu, H. Li, L. chen, X. Huang, J. Mater. Chem. A 2015, 3, 71; d) B. L. Ellis, L. F. Nazar, Curr. Opin. Solid State Mater. Sci. 2012, 16, 168; e) W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. Lee, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 2626.
- 6a) D. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 1271; b) H. Wang, Z. Wu, F. Meng, D. Ma, X. Huang, L. Wang, X. Zhang, ChemSusChem 2013, 6, 56; c) L. Fu, K. Tang, K. Song, P. A. van Aken, Y. Yu, J. Maier, Nanoscale 2014, 6, 1384; d) C. M. Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet, C. Vix-Guterl, Nano Energy 2018, 44, 327.
- 7Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, Nano Lett. 2012, 12, 3783.
- 8a) P. Thomas, D. Billaud, Electrochim. Acta 2002, 47, 3303; b) D. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A803; c) D. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 4428.
- 9C. Bommier, T. W. Surta, M. Dolgos, X. Ji, Nano Lett. 2015, 15, 5888.
- 10H. Lu, F. Ai, Y. Jia, C. Tang, X. Zhang, Y. Huang, H. Yang, Y. Cao, Small 2018, 14, 1802694.
- 11a) P. M. Carrott, M. R. Carrott, Bioresour. Technol. 2007, 98, 2301; b) R. J. Gosselink, E. de Jong, B. Guran, A. Abächerli, Ind. Crops Prod. 2004, 20, 121; c) N. Mahmood, Z. Yuan, J. Schmidt, C. Xu, Renewable Sustainable Energy Rev. 2016, 60, 317; d) A. V. Gidh, S. R. Decker, C. H. See, M. E. Himmel, C. W. Williford, Anal. Chim. Acta 2006, 555, 250; e) P. Schulze, A. Seidel-Morgenstern, H. Lorenz, M. Leschinsky, G. Unkelbach, Bioresour. Technol. 2016, 199, 128; f) Z. Chang, B. Yu, C. Wang, Electrochim. Acta 2015, 176, 1352.
- 12a) S. Kang, X. Li, J. Fan, J. Chang, Renewable Sustainable Energy Rev. 2013, 27, 546; b) W. J. Huijgen, G. Telysheva, A. Arshanitsa, R. J. Gosselink, P. J. de Wild, Ind. Crops Prod. 2014, 59, 85; c) A. U. Buranov, G. Mazza, Ind. Crops Prod. 2008, 28, 237.
- 13H. Zhang, D. Jia, Z. Yang, F. Yu, Y. Su, D. Wang, Q. Shen, Carbon 2017, 122, 547.
- 14S. Wang, L. Yang, L. P. Stubbs, X. Li, C. He, ACS Appl. Mater. Interfaces 2013, 5, 12275.
- 15S. Chatterjee, E. B. Jones, A. C. Clingenpeel, A. M. McKenna, O. Rios, N. W. McNutt, D. J. Keffer, A. Johs, ACS Sustainable Chem. Eng. 2014, 2, 2002.
- 16A. M. Navarro-Suárez, D. Saurel, P. Sánchez-Fontecoba, E. Castillo-Martinez, J. Carretero-Gonzalez, T. Rojo, J. Power Sources 2018, 397, 296.
- 17a) C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, M. N. Belgacem, Ind. Eng. Chem. Res. 2009, 48, 2583; b) Z. Fang, T. Sato, R. L. SmithJr., H. Inomata, K. Arai, A. J. Kozinski, Bioresour. Technol. 2008, 99, 3424.
- 18a) W. Li, M. Chen, C. Wang, Mater. Lett. 2011, 65, 3368; b) M. Li, W. Li, S. Liu, Carbohydr. Res. 2011, 346, 999; c) A. J. Romero-Anaya, M. Ouzzine, M. A. Lillo-Ródenas, A. Linares-Solano, Carbon 2014, 68, 296.
- 19S. Chaleawlert-umpon, C. Liedel, J. Mater. Chem. A 2017, 5, 24344.
- 20H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Adv. Energy Mater. 2017, 7, 1602898.
- 21J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen, R. Xiao, Polym. Degrad. Stab. 2014, 108, 133.
- 22C. Liu, J. Hu, H. Zhang, R. Xiao, Fuel 2016, 182, 864.
- 23Y. Guo, Z. Shi, M. Chen, C. Wang, J. Power Sources 2014, 252, 235.
- 24a) C. G. Boeriu, D. Bravo, R. J. Gosselink, J. E. van Dam, Ind. Crops Prod. 2004, 20, 205; b) A. Tejado, C. Peña, J. Labidi, J. M. Echeverria, I. Mondragon, Bioresour. Technol. 2007, 98, 1655.
- 25D. Yoon, J. Hwang, W. Chang, J. Kim, ACS Appl. Mater. Interfaces 2018, 10, 569.
- 26Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, Carbon 2018, 129, 695.
- 27a) P. Zhao, J. Zhang, Q. Li, C. Wang, J. Power Sources 2016, 334, 170; b) M. K. Rybarczyk, Y. Li, M. Qiao, Y. Hu, M. M. Titirici, M. Lieder, J. Energy Chem. 2018, 29, 17; c) Y. Zhang, X. Li, P. Dong, G. Wu; J. Xiao; X. Zeng, Y. Zhang, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 42796.