Self-Supported Lithium Titanium Oxide Nanosheet Arrays Decorated with Molybdenum Disulfide for High-Performance Lithium-Ion Batteries
Corresponding Author
Wei Zhang
Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY, 14802 USA
Search for more papers by this authorProf. Dawei Liu
Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY, 14802 USA
Search for more papers by this authorProf. Doreen D. Edwards
Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY, 14802 USA
Search for more papers by this authorCorresponding Author
Wei Zhang
Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY, 14802 USA
Search for more papers by this authorProf. Dawei Liu
Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY, 14802 USA
Search for more papers by this authorProf. Doreen D. Edwards
Kazuo Inamori School of Engineering, New York State College of Ceramics at Alfred University, Alfred, NY, 14802 USA
Search for more papers by this authorAbstract
Hierarchical nanocomposites of lithium titanium oxide (Li4Ti5O12; LTO) nanosheet arrays decorated with molybdenum disulfide (MoS2) were synthesized by a hydrothermal approach. Compared to LTO, the as-synthesized composites showed much improved capacity (433 mA h g−1 after 70 cycles at various current densities), good rate capability (320 mA h g−1 and 210 mA h g−1 at 500 mA g−1 and 2000 mA g−1, respectively), outstanding cycle stability (174 mA h g−1 after 1000 cycles at 5000 mA g−1), and a wide operating temperature range, extending from −15 to 55 °C when used as anode materials for lithium-ion batteries. The excellent performance of the MoS2@LTO composites could be attributed to the improved conductivity and unique hierarchical structure that provides a high contact surface area and reduced diffusion paths for both ion and electron transport. The results give clear evidence of the usefulness of MoS2 when improving the electrochemical properties of LTO electrodes, promising advanced batteries with high capacity and long cycle life.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ente201600187-sup-0001-misc_information.pdf215.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652–657.
- 2P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845–854.
- 3A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 2010, 9, 353–358.
- 4A. S. Aricò, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366–377.
- 5S. Jing, H. Jiang, Y. Hu, J. Shen, C. Li, Adv. Funct. Mater. 2015, 25, 5395–5401.
- 6H. Jiang, Y. Hu, S. Guo, C. Yan, P. S. Lee, C. Li, ACS Nano 2014, 8, 6038–6046.
- 7Q. Yue, H. Jiang, Y. Hu, G. Jia, C. Li, Chem. Commun. 2014, 50, 13362–13365.
- 8G. N. Zhu, Y. G. Wang, Y. Y. Xia, Energy Environ. Sci. 2012, 5, 6652.
- 9D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. V. Saraf, J. Zhang, I. A. Aksay, J. Liu, ACS Nano 2009, 3, 907–914.
- 10L. Zhao, Y. S. Hu, H. Li, Z. Wang, L. Chen, Adv. Mater. 2011, 23, 1385–1388.
- 11K. S. Park, A. Benayad, D. J. Kang, S. G. Doo, J. Am. Chem. Soc. 2008, 130, 14930–14931.
- 12Y. Q. Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. Ikuhara, L. J. Wan, J. Am. Chem. Soc. 2012, 134, 7874–7879.
- 13E. Ferg, R. J. Gummow, A. De Kock, M. M. Thackeray, J. Electrochem. Soc. 1994, 141, L147–L150.
- 14E. M. Sorensen, S. J. Barry, H. K. Jung, J. M. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier, Chem. Mater. 2006, 18, 482.
- 15G. N. Zhu, H. J. Liu, J. H. Zhuang, C. X. Wang, Y. G. Wang, Y. Y. Xia, Energy Environ. Sci. 2011, 4, 4016.
- 16G. Du, N. Sharma, V. K. Peterson, J. A. Kimpton, D. Jia, Z. Guo, Adv. Funct. Mater. 2011, 21, 3990.
- 17H. Jiang, G. Jia, Y. Hu, Q. Cheng, Y. Fu, C. Li, Ind. Eng. Chem. Res. 2015, 54, 2960–2965.
- 18W. Zhang, Z. Liu, X. Xiao, D. Liu, ChemElectroChem. 2015, DOI: 10.1002/celc.201500299.
- 19S. Huang, Z. Wen, J. Zhang, Z. Gu, X. Xu, Solid State Ionics 2006, 177, 851–855.
- 20L. Shen, C. Yuan, H. Luo, X. Zhang, S. Yang, X. Lu, Nanoscale 2011, 3, 572.
- 21J. Liu, K. Song, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2014, 14, 2597–2603.
- 22J. Xiao, X. Wang, X. Q. Yang, S. Xun, G. Liu, P. K. Koech, J. Liu, J. P. Lemmon, Adv. Funct. Mater. 2011, 21, 2840–2846.
- 23U. Kumar Sen, S. Mitra, ACS Appl. Mater. Interfaces 2013, 5, 1240–1247.
- 24T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 2014, 7, 209–231.
- 25H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 2015, 27, 3687–3695.
- 26K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, J. Y. Lee, J. Mater. Chem. 2011, 21, 6251.
- 27X. Xu, Z. Fan, S. Ding, D. Yu, Y. Du, Nanoscale 2014, 6, 5245–5250.
- 28J. Jiang, Y. Li, J. Liu, X. Huang, Nanoscale 2011, 3, 45.
- 29S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, L. Qi, Energy Environ. Sci. 2014, 7, 1924–1930.
- 30G. Xu, L. Yang, X. Wei. J. Ding, J. Zhong, P. K. Chu, Adv. Funct. Mater. 2016, DOI: 10.1002/adfm.201505435.
- 31N. M. D. Brown, N. Cui, A. McKinley, Appl. Surf. Sci. 1998, 134, 11–21.
- 32T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu, M. Li, Energy Environ. Sci. 2013, 6, 625–633.
- 33Y. Gong, S. Yang, Z. Liu, L. Ma, R. Vajtai, P. M. Ajayan, Adv. Mater. 2013, 25, 3979.
- 34M. Mao, L. Mei, D. Guo, L. Wu, D. Zhang, Q. Li, T. Wang, Nanoscale 2014, 6, 12350.
- 35X. Sun, Y. Li, Angew. Chem. Int. Ed. 2004, 43, 597–601; Angew. Chem. 2004, 116, 607–611.
- 36X. H. Cao, Y. M. Shi, W. H. Shi, X. H. Rui, Q. Y. Yan, J. Kong, H. Zhang, Small 2013, 9, 3433–3438.
- 37J. Li, Y. L. Jin, X. G. Zhang, H. Yang, Solid State Ionics 2007, 178, 1590.
- 38X. Zhu, C. Yang, F. Xiao, J. Wang, X. Su, New J. Chem. 2015, 39, 683.
- 39J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C. F. Ng, T. Yu, H. Zhang, H. J. Fan, Adv. Energy Mater. 2013, 3, 737.
- 40J. Y. Shin, D. Samuelis, J. Maier, Adv. Funct. Mater. 2011, 21, 3464.
- 41M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364.
- 42S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, S. Che, Adv. Mater. 2012, 24, 543.
- 43M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, J. Jamnik, Electrochem. Solid-State Lett. 2008, 11, A 170.
- 44J. Guo, A. Sun, X. Chen, C. Wang, A. Manivannan, Electrochim. Acta 2011, 56, 3981.
- 45C. Wang, X. Zhang, Y. Zhang, Y. Jia, J. Yang, P. Sun, Y. Liu, J. Phys. Chem. C 2011, 115, 22276.
- 46H. D. Yu, Z. Zhang, M. Y. Han, Small 2012, 8, 2621.