Antibody-mediated delivery of antigen to chemokine receptors on antigen-presenting cells results in enhanced CD4+ T cell responses
Corresponding Author
Karoline W. Schjetne
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, N-0027 Oslo, Norway Fax: +47-23073510Search for more papers by this authorHans T. Gundersen
Institute of Physiology, University of Oslo, Oslo, Norway
Search for more papers by this authorJens-Gustav Iversen
Institute of Physiology, University of Oslo, Oslo, Norway
Search for more papers by this authorKeith M. Thompson
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
Search for more papers by this authorBjarne Bogen
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
Search for more papers by this authorCorresponding Author
Karoline W. Schjetne
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, N-0027 Oslo, Norway Fax: +47-23073510Search for more papers by this authorHans T. Gundersen
Institute of Physiology, University of Oslo, Oslo, Norway
Search for more papers by this authorJens-Gustav Iversen
Institute of Physiology, University of Oslo, Oslo, Norway
Search for more papers by this authorKeith M. Thompson
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
Search for more papers by this authorBjarne Bogen
Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
Search for more papers by this authorAbstract
Here, we have investigated if targeting of T cell epitopes to chemokine receptors results in improved CD4+ T cell responses. Mouse monoclonal antibodies (mAb) with κL chains were targeted to various chemokine receptors expressed on human monocytes or immature dendritic cells (DC), and proliferation of cloned human, DR4-restricted CD4+ T cells specific for mouse Cκ40–48 was measured. When using monocytes as antigen-presenting cells, mAb specific for CCR1, CCR2, CCR5, and CXCR4 were 100–10,000-fold more efficient at inducing T cell proliferationwhen compared to isotype-matched control mAb on a per molecule basis. Targeting of immature DC was less effective and was only seen with anti-CCR1 and anti-CXCR4 mAb. Anti-chemokine receptors mAb required to be processed by the conventional endosomal MHC class II presentation pathway. The mAb did not induce signaling through the chemokine receptors as they failed to induce mobilization of cytosolic Ca2+ and actin polymerization. They also failed to induce APC maturation. The results strongly suggest that chemokine receptors channel antigen into the endocytic pathway for presentation on MHC class II molecules. Targeting T cell epitopes to chemokine receptors by recombinant antibody should be a useful vaccine strategy for the induction of strong CD4+ T cell responses.
References
- 1 Sallusto, F., Mackay, C. R. and Lanzavecchia, A., The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 2000. 18: 593–620.
- 2 Biragyn, A., Tani, K., Grimm, M. C., Weeks, S. and Kwak, L. W., Genetic fusion of chemokines to a self tumor antigen induces protective, T cell-dependent antitumor immunity. Nat. Biotechnol. 1999. 17: 253–258.
- 3 Biragyn, A., Surenhu, M., Yang, D., Ruffini, P. A., Haines, B. A., Klyushnenkova, E., Oppenheim, J. J. and Kwak, L. W., Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 2001. 167: 6644–6653.
- 4 Bogen, B., Malissen, B. and Haas, W., Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. Eur. J. Immunol. 1986. 16: 1373–1378.
- 5 Weiss, S. and Bogen, B., B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc. Natl. Acad. Sci. USA 1989. 86: 282–286.
- 6 Lanzavecchia, A., Abrignani, S., Scheidegger, D., Obrist, R., Dorken, B. and Moldenhauer, G., Antibodies as antigens. The use of mouse monoclonal antibodies to focus human T cells against selected targets. J. Exp. Med. 1988. 167: 345–352.
- 7 Jiang, W., Swiggard, W. J., Heufler, C., Peng, M., Mirza, A., Steinman, R. M. and Nussenzweig, M. C., The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells isinvolved in antigen processing. Nature 1995. 375: 151–155.
- 8 Schjetne, K. W., Thompson, K. M., Aarvak, T., Fleckenstein, B., Sollid, L. M. and Bogen, B., A mouse C(kappa)-specific T cell clone indicates that DC-SIGN is an efficient target for antibody-mediated delivery of T cell epitopes for MHC class II presentation. Int. Immunol. 2002. 14: 1423–1430.
- 9 Sallusto, F., Lanzavecchia, A. and Mackay, C. R., Chemokines and chemokine receptors in T cell priming and Th1/Th2-mediated responses. Immunol. Today 1998. 19: 568–574.
- 10 Delamarre, L., Holcombe, H. and Mellman, I., Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II is differentially regulated during dendritic cell maturation. J. Exp. Med. 2003. 198: 111–122.
- 11 Burger, J. A., Burger, M. and Kipps, T. J., Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 1999. 94: 3658–3667.
- 12 Baggiolini, M., Chemokines and leukocyte traffic. Nature 1998. 392: 565–568.
- 13 Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J. and Kwak, L. W., Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002. 298: 1025–1029.
- 14 Biragyn, A., Belyakov, I. M., Chow, Y. H., Dimitrov, D. S., Berzofsky, J. A. and Kwak, L. W., DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractantsinduce systemic and mucosal immune responses. Blood 2002. 100: 1153–1159.
- 15 Engering, A., Geijtenbeek, T. B., van Vliet, S. J., Wijers, M., vanLiempt, E., Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C. G., Piguet, V. and van Kooyk, Y., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 2002. 168: 2118–2126.
- 16 Dzionek, A., Sohma, Y., Nagafune, J., Cella, M., Colonna, M., Facchetti, F., Gunther, G., Johnston, I., Lanzavecchia, A., Nagasaka, T., Okada, T., Vermi, W., Winkels, G., Yamamoto, T., Zysk, M., Yamaguchi, Y. and Schmitz, J., BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J. Exp. Med. 2001. 194: 1823–1834.
- 17 Lunde, E., Western, K. H., Rasmussen, I. B., Sandlie, I. and Bogen, B., Efficient delivery of T cell epitopes to APC by use of MHC class II-specific Troybodies. J. Immunol. 2002. 168: 2154–2162.
- 18 Solari, R., Offord, R. E., Remy, S., Aubry, J. P., Wells, T. N., Whitehorn, E., Oung, T. and Proudfoot, A. E., Receptor-mediated endocytosis of CC-chemokines. J. Biol. Chem. 1997. 272: 9617–9620.
- 19 Signoret, N., Oldridge, J., Pelchen-Matthews, A., Klasse, P. J., Tran, T., Brass, L. F., Rosenkilde, M. M., Schwartz, T. W., Holmes, W., Dallas, W., Luther, M. A., Wells, T. N., Hoxie, J. A. and Marsh, M., Phorbol esters and SDF-1 induce rapid endocytosis and down-modulation of the chemokine receptor CXCR4. J. Cell. Biol. 1997. 139: 651–664.
- 20 Forster, R., Kremmer, E., Schubel, A., Breitfeld, D., Kleinschmidt, A., Nerl, C., Bernhardt, G. and Lipp, M., Intracellular and surface expression of theHIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immunol. 1998. 160: 1522–1531.
- 21 Yang, W., Wang, D. and Richmond, A., Role of clathrin-mediated endocytosis in CXCR2 sequestration, resensitization, and signal transduction. J. Biol. Chem. 1999. 274: 11328–11333.
- 22 Schjetne, K. W., Thompson, K. M., Nilsen, N., Flo, T. H., Fleckenstein, B., Iversen, J. G., Espevik, T. and Bogen, B., Cutting Edge: Link between innate and adaptive immunity: Toll-like receptor 2 internalizes antigen for presentation to CD4+ T cells and could be an efficient vaccine target. J. Immunol. 2003. 171: 32–36.
- 23 Baier, G., Baier-Bitterlich, G., Looney, D. J. and Altman, A., Immunogenic targeting of recombinant peptide vaccines to human antigen-presenting cells by chimeric anti-HLA-DR and anti-surface immunoglobulin D antibody Fab fragments in vitro. J.Virol. 1995. 69: 2359–2365.
- 24 Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Ravetch, J. V., Steinman, R. M. and Nussenzweig, M. C., Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 2001. 194: 769–779.
- 25 Lunde, E., Bogen, B. and Sandlie, I., Immunoglobulin as a vehicle for foreign antigenic peptides immunogenic to T cells. Mol. Immunol. 1997. 34: 1167–1176.
- 26 Rasmussen, I. B., Lunde, E., Michaelsen, T. E., Bogen, B. and Sandlie, I., The principle of delivery of T cell epitopes to antigen-presenting cells applied to peptides from influenza virus, ovalbumin, and hen egg lysozyme: implications for peptide vaccination. Proc. Natl. Acad. Sci. USA 2001. 98: 10296–10301.
- 27 Lunde, E., Munthe, L. A., Vabø, A., Sandlie, I. and Bogen, B., Antibodies engineered with IgD specificity efficiently deliver integrated T cell epitopes for antigen presentation by B cells. Nat. Biotechnol. 1999. 17: 670–675.
- 28 Røtnes, J. S. and Bogen, B., Ca2+ mobilization in physiologically stimulated single T cells gradually increases with peptide concentration (analog signaling). Eur. J. Immunol. 1994. 24: 851–858.