Volume 11, Issue 5 pp. 2110-2172
ORIGINAL RESEARCH
Open Access

Seeing the wood despite the trees: Exploring human disturbance impact on plant diversity, community structure, and standing biomass in fragmented high Andean forests

Mariasole Calbi

Corresponding Author

Mariasole Calbi

Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany

Institut für Biologie – Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, Germany

Correspondence

Mariasole Calbi, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany.

Email: [email protected]

Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), ​Investigation (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)

Search for more papers by this author
Francisco Fajardo-Gutiérrez

Francisco Fajardo-Gutiérrez

Jardín Botánico de Bogotá José Celestino Mutis, Bogotá, Colombia

Contribution: Data curation (supporting), Formal analysis (supporting), ​Investigation (supporting), Methodology (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)

Search for more papers by this author
Juan Manuel Posada

Juan Manuel Posada

Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia

Contribution: Conceptualization (equal), Data curation (equal), ​Investigation (supporting), Methodology (lead), Project administration (equal), Resources (equal), Visualization (equal), Writing - original draft (supporting), Writing - review & editing (supporting)

Search for more papers by this author
Robert Lücking

Robert Lücking

Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany

Contribution: Conceptualization (equal), Data curation (supporting), Formal analysis (equal), ​Investigation (equal), Methodology (lead), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)

Search for more papers by this author
Grischa Brokamp

Grischa Brokamp

Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany

Contribution: Funding acquisition (equal), Methodology (supporting), Project administration (lead), Resources (equal), Supervision (equal), Writing - original draft (equal), Writing - review & editing (supporting)

Search for more papers by this author
Thomas Borsch

Thomas Borsch

Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany

Institut für Biologie – Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, Germany

Contribution: Conceptualization (supporting), Funding acquisition (lead), ​Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (lead), Writing - original draft (equal), Writing - review & editing (supporting)

Search for more papers by this author
First published: 01 February 2021
Citations: 15

Funding information

This research was funded by the Federal Ministry of Education and Research of Germany (BMBF, ColBioDiv—01DN17006). We also acknowledge support by the Frauenförderung and the Open Access Publication Fund of the Freie Universität Berlin.

Abstract

High Andean forests harbor a remarkably high biodiversity and play a key role in providing vital ecosystem services for neighboring cities and settlements. However, they are among the most fragmented and threatened ecosystems in the neotropics. To preserve their unique biodiversity, a deeper understanding of the effects of anthropogenic perturbations on them is urgently needed. Here, we characterized the plant communities of high Andean forest remnants in the hinterland of Bogotá in 32 0.04 ha plots. We assessed the woody vegetation and sampled the understory and epiphytic cover. We gathered data on compositional and structural parameters and compiled a broad array of variables related to anthropogenic disturbance, ranging from local to landscape-wide metrics. We also assessed phylogenetic diversity and functional diversity. We employed nonmetric multidimensional scaling (NMDS) to select meaningful variables in a first step of the analysis. Then, we performed partial redundancy analysis (pRDA) and generalized linear models (GLMs) in order to test how selected environmental and anthropogenic variables are affecting the composition, diversity, and aboveground biomass of these forests. Identified woody vegetation and understory layer communities were characterized by differences in elevation, temperature, and relative humidity, but were also related to different levels of human influence. We found that the increase of human-related disturbance resulted in less phylogenetic diversity and in the phylogenetic clustering of the woody vegetation and in lower aboveground biomass (AGB) values. As to the understory, disturbance was associated with a higher diversity, jointly with a higher phylogenetic dispersion. The most relevant disturbance predictors identified here were as follows: edge effect, proximity of cattle, minimum fragment age, and median patch size. Interestingly, AGB was efficiently predicted by the proportion of late successional species. We therefore recommend the use of AGB and abundance of late successional species as indicators of human disturbance on high Andean forests.

1 INTRODUCTION

High Andean tropical montane forests (herein bosques altoandinos) can be found between ca. 2,700 and 3,300 m in the Northern Andes, extending from Venezuela to Ecuador, with considerable levels of species diversity and endemism (Gentry & Ortiz, 1993; Girardin et al., 2014; Killeen et al., 2007; Still et al., 1999; Young, 1992). These forests provide vital ecosystem services to the neighboring cities and settlements, such as the regulation of water fluxes (Armenteras et al., 2003; Chaves & Arango, 1998; Linares & Ríos, 2004; Rangel, 2000) or carbon capture and storage (Brown & Kappelle, 2001; Torres et al., 2012).

Bosques altoandinos have been subjected to extensive anthropogenic transformation across their natural range. In Colombia, large portions of the forest cover were cleared during the past four centuries and turned into agricultural or residential areas, in order to satisfy the growing demand for resources of an increasing human population (Brown & Kappelle, 2001; Cavelier et al., 2001; Etter et al., 2008; Heath & Binswanger, 1996; Sánchez-Cuervo et al., 2012; Wassenaar et al., 2007). Such a reduction of forest cover can not only lead to loss of biodiversity but also to a lower structural integrity and resilience of the remaining fragments (Mori et al., 2013). Changes in species composition also go along with shifts in functional diversity and biological interactions (Bovendorp et al., 2019; Diaz & Cabido, 2001; Flynn et al., 2011; Petchey & Gaston, 2002, 2007; Poos et al., 2009; Swenson, 2014). Eventually, this affects ecosystem services (González et al., 2011; Menon et al., 2007; Rangel, 2000; Torres et al., 2012).

In the recent past, forest cover has increasingly been monitored using remote sensing techniques. For the Colombian high Andean forests, this has shown modest signs of recovery in some areas (Calbi et al., 2020; Etter, 2002; Rubiano et al., 2017; Sánchez-Cuervo et al., 2012; but see Anselm et al., 2018). However, remote sensing cannot detect cryptic forms of forest degradation, such as selective logging or understory grazing. Even plot-based surveys focusing on trees may not reveal such alterations. Yet, cryptic forest degradation has significant impact on soil erosion, successional dynamics, and regeneration, since understory and epiphytic plants are major drivers of ecosystem functioning (Nilsson & Wardle, 2005). Understanding the effects of anthropogenic disturbance on all major forest components, that is, tree, shrub, understory, and epiphyte layers, is therefore essential to elaborate and implement effective strategies for the sustainable management of these forest ecosystems (Battles et al., 2001; Fahey & Puettmann, 2007; Halpern & Spies, 1995; Roberts & Gilliam, 1995). In addition, multiple predictor and response variables should be analyzed simultaneously to properly address disturbance effects within this complex environment.

One of the best areas to study the impact of human-induced alterations on bosques altoandinos in the northern Andes is the area of Bogotá, the capital of Colombia, which is situated at approximately 2,600 m altitude. With a population of around 9 million inhabitants, Bogotá is by far the largest city in the Andean high montane forest belt, putting tremendous pressure on the surrounding ecosystems. Remnants of high Andean forests near Bogotá are mostly affected by rural activities, which include logging, fires, and agriculture, typically resulting in soil compaction, low fertility, and/or erosion (Armenteras et al., 2003; Linares & Ríos, 2004; Posada & Norden, unpublished results). Bosques altoandinos in the surroundings of Bogotá have mostly been studied using phytosociological analysis of plot inventory data (Avella et al., 2014; Cantillo Higuera & Gracia, 2013; Cleef, 1981; Cortés, 2008; Sturm & Rangel, 1985; Van der Hammen, 2008). Beyond such floristically oriented approaches, few studies have addressed the effects of disturbance on these forest ecosystems. Some preliminary research works on forest succession and regeneration were carried out as thesis works (Acuña, 2013; Restrepo Abadia, 2016). In a recent study, Rodríguez-Alarcón et al. (2018) found a negative effect of forest fragmentation on functional diversity and aboveground biomass, a first indication that more complex parameters such as functional diversity are indeed related to ecosystem services such as carbon storage. However, studies that simultaneously consider multiple disturbance predictors and different plant communities response variables were so far lacking.

According to the available literature, the most relevant disturbance factors, which variation proved to be significantly related to differences in forest species composition or diversity metrics, are as follows: age of forest fragment (Köster et al., 2009; Laurance et al., 2006), proximity to houses or roads and people and livestock density (Ribeiro et al., 2015, 2016), edge effect, and proximity to pastures (Parra Sánchez et al., 2016; Werner & Gradstein, 2009), as well as forest cover fragmentation metrics (Fahrig, 2003; Hertzog et al., 2019; Laurance et al., 2006). Nonetheless, it has not yet been tested whether these factors would be still relevant when a larger number of variables are considered simultaneously. For this reason, we conducted a comprehensive integrated assessment of the potential effects of multiple environmental and disturbance variables on the taxonomic, phylogenetic, and functional diversity of the two main forest layers (tree layer and understory) and on epiphytes cover.

We therefore hypothesized that anthropogenic disturbance as a whole, understood as a composite variable sensu Paine et al. (1998), affects the composition, and aboveground biomass of bosques altoandinos, with impacts on community diversity metrics, that is, taxonomic, phylogenetic, and functional diversity. We also hypothesized that our comprehensive analysis would identify significant predictor and response variables other than those found in previous studies. We specifically set out to answer three questions: (a) Which environmental and disturbance variables best explain species diversity and composition of tree and understory layers? (b) What are the effects of facilitators (parameters that increase the likeliness of disturbance) and causes (direct sources) of disturbance on species diversity, phylogenetic structure, functional diversity, and aboveground biomass? (c) Which vegetation variables are best indicators of disturbance?

2 METHODS

2.1 Study area

The study area encompasses ca. 4,600 km2 within the Cundiboyacense high plain in the Cordillera Oriental of Colombia, spanning peri-urban and rural areas of the department of Cundinamarca and the administrative region of the city of Bogotá (Bogotá D.C. or Distrito Capital). The capital region is the most densely populated area of the country, with nearly 9 million inhabitants and approximately 4,500 people per km2 (DANE, 2019). The climate is characterized by isothermality with an annual mean temperature of around 14°C and mean annual precipitation between 600 and 1,300 mm. There are two rainy seasons: from April to June and from September to November, with a drier and warmer season from January to March (Anselm et al., 2020; IDEAM, 2007, 2015). The topography is marked by an extended plain, situated at around 2,600 m, which hosts most of the urban and agricultural area, and steep elevation gradients including mountains of up to 4,100 m altitude. Dominant soils in the study area were classified as Andisols (IGAC, 1985; Etter, 2002; Sturm & Rangel, 1985).

Rural areas in the region are highly influenced by the adjacent city of Bogotá and contiguous suburbs. Hence, sparse remnants of original vegetation are intermixed with secondary forests (Cortés, 2008; Rubiano et al., 2017). These remnants are largely dominated, by trees and shrubs in genera such as Weinmannia, Miconia, Clusia, Hesperomeles, Clethra, Myrcianthes, Myrsine, Gaultheria and Escallonia, various genera of Lauraceae, and Cedrela montana. Hygrophytic communities with prevalence of Drimys granadensis or Hedyosmum or higher elevation heliophyte associations of Gynoxys, Diplostephium, and Vallea stipularis also form part of these ecosystems (Rangel, 2000; Sturm & Rangel, 1985; Van der Hammen, 1998). The forest patches are embedded in a landscape mosaic with cattle pastures and small-scale cultivation of potatoes (Solanum tuberosum), green beans (Pisum sativum), and cubios (Tropaeolum tuberosum). The size of remaining forest fragments is generally small, and their regeneration is threatened by further fragmentation, invasive species, erosion (Linares & Ríos, 2004), and urbanization (Rubiano et al., 2017).

2.2 Plot setup

Due to the usually small size of forest fragments, we used a plot size of 20 × 20 m (0.04 ha) as established in the framework of the Rastrojos project (Acuña, 2013; Hurtado-Martilletti et al., 2020; Muñoz-Camacho et al., 2017). We complemented the data from the tree layer assessments of 20 plots obtained from the Rastrojos project with data from 12 plots set up and assessed during this study. In addition to the tree layer data, we also assessed the understory layer, and epiphyte cover in the totaling 32 plots, which are located in six administrative regions of Bogotá D.C. and Cundinamarca (Figure 1; Appendix A1). We aimed for a widely scattered position of plots in order to represent the landscape (e.g., including differently inclined slopes). Our sampling design was influenced by the distribution of available and accessible fragments. Plot locations belonged to privately owned protected areas and farms, for which we obtained the required permits of entry from the corresponding owners.

Details are in the caption following the image
Study area and plot locations. (a) Colombia with Bogotá Capital Department in black; (b) manually vectorized forest fragment in Guatavita; (c) Typical aspect of forest fragment in the study area: (d) Bogotá Capital Department and plot locations. Base map modified from Bing and OSM

2.3 Macro-environmental variables

For each plot, macro-environmental variables were compiled from different sources in QGIS 2.18.12 “Las Palmas” (QGIS Development Team, 2018). Altitude, slope, and aspect (northness and eastness) were derived from an Aster Digital elevation model of the study area; for this, ASTGTM2_N04W075, ASTGTM2_N05W075, ASTGTM2_N05W074, and ASTGTM2_N04W074 data products were retrieved from the NASA Land Processes Distributed Active Archive Center (LP DAAC; https://lpdaac.usgs.gov/tools/data-pool, NASA/METI/AIST/Japan Spacesystems & U.S./Japan ASTER Science Team, 2009). Mean annual precipitation and mean and maximum temperature data for the period 1981–2010 were obtained from the IDEAM meteorological station closest to each plot (http://www.pronosticosyalertas.gov.co/mapas-graficos-tiempo-clima/indicadores-climatologicos). Mean population density was extracted in two buffers (radius 1 km and 5 km) around the plots from the worldpop database for South America at 1 ha resolution (https://www.worldpop.org, Sorichetta et al., 2015). A complete list of all macro-environmental variables can be found in the Appendix A2.

2.4 Tree and shrub layer assessment

Following the protocol of Hurtado-Martilletti et al. (2020), for every woody plant with basal diameter > 5 cm (measured at 5 cm from the ground—DAH: Diameter at “ankle” height), we recorded its DAH, DBH and visually estimated tree height, a method that proved to be quite precise for lower canopies such as the ones studied here (Silva et al., 2012). Plant material was collected and identified with the available literature (Gentry & Vasquez, 1993; Trelease & Yuncker, 1950; or webpages: https://plantasdecolombia.com), by comparison with herbarium specimens, digitized specimens available online (JBB: http://herbario.jbb.gov.co; COL: http://www.biovirtual.unal.edu.co/en/collections/search/plants), or with additional help from local experts. Specimens were deposited in the herbarium of the Jardín Botánico de Bogotá José Celestino Mutis (JBB); high-resolution digital specimen images can be provided upon request; and a plot-resolved list of vouchers can be found in the Appendix A3.

2.5 Understory assessment

In each 20 × 20 m plot, eight 1 × 1 m quadrants (with marked 10 cm subgrids) were placed randomly. All vascular plants, including tree seedlings, were recorded, and mean height and total cover (the sum of all individuals cover) were measured for every species in each quadrant. When available, fertile material was collected and deposited in the JBB. Additionally, cover of bare soil, leaf litter, bryophytes, lichens, and coarse woody debris was visually estimated for every quadrant.

2.6 Epiphyte cover

In each plot, we sampled 40 randomly selected trees to estimate the epiphyte cover. Categorical cover classes (ranging from 0 to 3) were assigned to each of five major epiphyte groups (bryophytes, lichens, ferns, bromeliads, and orchids), separately for trunk and canopy branches.

2.7 Functional traits and functional diversity

Three leaf functional traits (specific leaf area: SLA; leaf thickness: LT; and leaf dry matter content: LDMC) were measured for each tree species following the protocols provided by Pérez-Harguindeguy et al., (2013). Five leaves were collected from each of up to three different individuals per species and stored in wet paper for at least 12 hr, then weighted (petiole included). LT was measured with a digital micrometer, and a digital scan of the fresh leaves was taken with a Hewlett-Packard F4280 scanner. Leaf area was calculated with ImageJ 1.8.0 (Schneider et al., 2012). Leaves were oven-dried at 60°C until constant weight and weighted; SLA was then calculated as one-sided area of a fresh leaf divided by its dry mass, expressed in cm2/g. LDMC was calculated as the dry mass (mg) divided by its fully hydrated fresh mass (g), and expressed in mg/g. Additionally, wood density (WD) was obtained from Rodríguez-Alarcón et al. (2018) and the global wood density database (Chave et al., 2009) for all tree species or, depending on availability, at genus or family level estimates, using the R package biomass (Réjou-Méchain et al., 2018) in R Studio (R Core Team, 2018). The traits used to estimate functional diversity were SLA, LDMC, LT, WD, maximum recorded height in the plots, and life form (tree or shrub). The final trait database was completed with data from the Rastrojos project including data from published reports (Muñoz-Camacho et al., 2017) and Posada (unpublished results).

To reduce skewness, traits were log10-transformed and computation of functional divergence, functional dispersion, functional richness, functional evenness, and Rao's quadratic entropy (FDiv, FDis, FRic, FEve and Rao's Q) was performed as indicated in Villéger et al. (2008), using the R package FD (Laliberté & Legendre, 2010; Laliberté et al., 2014). We specified “corr + lingoes, m = 3” to reduce dimensionality. Functional diversity (FD) index (Petchey & Gaston, 2002) was calculated as the total branch length of a functional dendrogram generated on a distance matrix of traits with the R function hclust, using the PD function in the R package picante (Kembel et al., 2010). We decided to compute functional diversity according to the framework proposed by Mason et al. (2005) and Villéger et al. (2008). The calculated indices provide independent information about the position and relative abundances of species in a multidimensional functional space, allowing for a more detailed examination of the mechanisms linking biodiversity to ecosystem function (Villéger et al., 2008).

2.8 Landscape metrics

A Landsat 8 raster was downloaded from the US Geological Survey and processed in QGIS with the SCP plugin (Congedo, 2016) to obtain a land cover map. Landscape metrics refer to the size, shape, configuration, number, and position of land-use patches within a landscape and were obtained for the forest class within a 1,000 m diameter buffer zone around the plots with the LecoS plugin (Jung, 2013).

Additionally, fragments of forests were manually vectorized and the area was calculated on a prepared Bing aerial map obtained through the Openlayers plugin (see Figure 1 for an example). Distance to closest roads was calculated with the NNJoin plugin on a shapefile downloaded from the DANE Web site (2018). Also, the type of closest road (main, secondary, or track) was noted. Distances to closest houses or tracks were manually measured on the map. Presence or absence of cattle or active cultivated fields in different buffers (0 m, 50 m, 100 m, or 500 m radius) was surveyed in the field. A complete list of all landscape metrics can be found in the Appendix A2.

Minimum age of the forest cover of each plot was estimated through the visual analysis of 43 aerial pictures of the plot locations acquired from the IGAC (Instituto Geográfico Agustín Codazzi, Bogotá; a detailed list of images can be found in the Appendix A4). The pictures ranged from the year 1940 to 2000 at roughly 10-year intervals. We searched for available pictures from our plot locations and visually located the plots on the nongeoreferenced images. For each plot, we estimated the minimum age based on the oldest documented continuous occurrence of closed forest. A further analysis of forest cover change during the last seven decades around the study plots, carried out on the same set of aerial pictures, is presented in Calbi et al. (2020).

2.9 Community composition and structural variables

Based on the available literature (Cleef, 1981; Cortés, 2008; Cuatrecasas, 1958; Sturm & Rangel, 1985; Van der Hammen, 1998), tree layer species were classified either as late successional slow-growing, early successional fast-growing, exotic, or “other” (see Appendix A3 for details). Additionally, understory exotic species cover was calculated. The number of species and the relative proportion of individuals (in case of trees) or the percent cover (in case of the understory) of exotic species were used as indicators of disturbance versus conservation. Variance of tree DBH and height was also computed across all trees within each plot, together with the overall number of tree individuals, stems, stems per tree, and the percentage of large trees (DBH > 30 cm). Mean understory height and cover was calculated, as well as mean epiphytes cover.

The Gini coefficient, a measure of inequality within a distribution widely used in forestry (Bourdier et al., 2016; Latham et al., 1998; Lexerød & Eid, 2006), was calculated in each plot for stem basal areas with the gini function in the R package reldist (Handcock, 2016).

2.10 Taxonomic and phylogenetic diversity

Alpha-diversity indices (Shannon's diversity, Simpson's and Pielou's evenness) were computed for each plot with the R package vegan (Oksanen et al., 2013). Phylogenetic community structure was assessed on the basis of a published angiosperm supertree (Phylomatic tree R20120829, available at https://github.com/camwebb/tree-of-trees/blob/master/megatrees/R20120829.new). First, a regional pool tree was generated with the Phylomatic webtool (Webb & Donoghue, 2005), and then, branch lengths were assigned with the bladj algorithm in the software Phylocom 4.2 (Webb et al., 2008), using the wikstrom.ages file (Wikström et al., 2001). Phylogenetic diversity (PD), mean pairwise distance (MPD), mean nearest taxon distance (MNTD), and their standardized counterparts (sesPD, sesMPD, and sesMNTD) were calculated for both trees and understory in the R package picante (Kembel et al., 2010). Moreover, abundance-weighted MPD and MNTD were calculated to account for differences in species abundance (Webb et al., 2011). Four species of the Lycopodiaceae had to be removed from the understory regional pool since the family was not included in the used supertree.

The standardized PD metrics express the difference between observed and average value in units of standard deviation (SD). Positive values indicate phylogenetic overdispersion (co-occurring species are more distantly related than expected by chance) and negative values phylogenetic clustering (co-occurring species are more closely related than expected by chance).

2.11 Aboveground biomass

Aboveground tree biomass was calculated with the R package biomass. Field measurements of DBH contained less than 5% missing data, so imputation of missing values was performed with the R package mice (van Buuren & Groothuis-Oudshoorn, 2011). To balance the missing data in height measurements, a regional diameter–height model was built in biomass. Error propagation was carried out using the AGBmonteCarlo function. Wood density error (errWD) was obtained with the getWoodDensity function as prior values on the uncertainty on wood density values, obtained using the mean sd at the species, genus, and family levels of taxa having at least 10 wood density values in the Global Wood Density database (Réjou-Méchain et al., 2017). Height error (errH) was calculated as the RSE resulting from the local height–diameter models, as in Réjou-Méchain et al. (2017), and diameter measurements propagation error (Dpropag) was set to "chave2004," which assigns a standard important error on 5 percent of the measures, and a smaller error on 95 percent of the trees (Réjou-Méchain et al., 2018).

Mean stand aboveground biomass (AGB) and 95% credibility interval following the error propagation were calculated with the following equation (Chave et al., 2014):
urn:x-wiley:20457758:media:ece37182:ece37182-math-0001
where AGB = aboveground biomass [kg], WD = wood density [g/cm3], H = height [m], and D = DBH [cm]. Mean AGB per tree was calculated by dividing the total AGB value of each plot by the number of tree individuals.

2.12 Data analysis

2.12.1 Drivers of species composition of tree layer and understory

Presence and abundance of all tree, shrub, and liana species were compiled for each plot. Relative abundance was calculated for tree and understory layer mean cover.

Environmental and disturbance-related variables as well as calculated diversity and biomass metrics were assigned to one of five categories relative to disturbance: geo-environmental = predicting, causes = predicting, facilitators (parameters that increase the likeliness of disturbance) = predicting, level (calculated complex parameters of disturbance outcomes) = response, indicators (parameters that indicate directly the degree of disturbance) = response (Appendix A2). For instance, signs of grazing or logging were considered a potential cause of disturbance, whereas the nearest distance to a road was considered a potential facilitator. Diversity indices and biomass estimation were included in the level category.

To filter for dominant variables, we first ordinated the plots based on relative species abundances using nonmetric multidimensional scaling (NMDS) in vegan, using the mds function with Bray–Curtis distances, and specifying three as maximum number of axes. Subsequently, we fitted all variables using the envfit function and examined variable ordination scores, in order to identify the variables most strongly correlated with community composition and to assess redundancy. Both predictor and response variables were included in the same analyses, and NMDS was performed separately for tree and understory layer. Second, using Sørensen distances and flexible beta (set to –0.25) as group linkage method (McCune & Mefford, 2015), cluster analysis and subsequently indicator species analysis for each cluster were carried out in PCORD 7 (McCune & Mefford, 2015), in order to further classify community types and their characteristic elements.

Following this preliminary analysis, we determined a subset of variables that correlated with the main axes above a given threshold (Rsq > 0.35; Table 1) and performed either Kruskal–Wallis or parametric ANOVA, depending on the determined conditional distribution, using the clusters as independent variables and the filtered subsets of variables as response variables.

TABLE 1. Variables (only predictors retained) correlating with axes above RSq > 0.35 for trees and understory NMDS
Variable R sq p
Trees elev 0.84 0.001
rel_hum 0.81 0.001
like_adjacencies 0.72 0.001
splitting_index 0.71 0.001
patch_cohesion_index 0.68 0.001
logg 0.63 0.001
greatest_patch 0.63 0.001
largest_patch_index 0.62 0.001
land_cover 0.61 0.001
landscape_porportion 0.61 0.001
overall_core 0.59 0.001
mean_T 0.54 0.001
landscape_shannon 0.53 0.001
effective_meshsize 0.52 0.002
landscape_division 0.52 0.002
cult_100 0.49 0.001
cattle 0.49 0.001
landscape_simpson 0.45 0.003
cattle_100 0.42 0.003
age 0.41 0.004
cattle_50m 0.39 0.006
road_dist 0.36 0.001
Understory elev 0.74 0.001
fragment 0.62 0.001
overall_core 0.58 0.001
nn_distance 0.57 0.001
road_dist 0.55 0.001
edge_density 0.55 0.001
edge_lenght 0.55 0.001
m_DBH 0.54 0.001
like_adjacencies 0.53 0.001
landscape_pielou 0.53 0.001
people_density_1km 0.49 0.001
landscape_simpson 0.49 0.001
mAGBT 0.48 0.001
people_density_5km 0.45 0.001
effective_meshsize 0.43 0.001
landscape_division 0.43 0.001
landscape_shannon 0.43 0.001
n_stems 0.43 0.001
land_cover 0.41 0.002
landscape_porportion 0.41 0.002
n_trees 0.40 0.001
cult_500 0.40 0.001
mean_H 0.39 0.001
greatest_patch 0.38 0.003
largest_patch_index 0.38 0.003
mean_patch 0.38 0.001
age 0.36 0.001
cattle_100 0.36 0.002

To verify the presence of spatial autocorrelation in our predictors and responses, we calculated a geographical distance matrix between study plots and performed Moran's I test for all calculated variables. We detected spatial autocorrelation for 24 predictors, but none in our response variables (i.e., diversity metrics).

Finally, partial redundancy analysis (pRDA) was performed in vegan, separately for tree and understory layer. To take into account spatial autocorrelation, we fitted a pRDA specifying “locality” as condition, to be able to rule out locality effect on the ordination. The “condition” argument thereby defines partial terms that are fitted before other constraints and can be used to remove the effects of background variables, and their contribution to decomposing inertia (variance) is reported separately (Oksanen et al., 2013). Additionally, we performed Hellinger transformation of our community data as recommended by Legendre and Gallagher (2001). We further selected predictors from the set obtained with the NMDS screening, by checking for correlation (r > 0.7), performing Variance Inflation Factor (VIF) analysis (setting the threshold to 10), and then using the vegan ordistep function which performs automatic stepwise model building for constrained ordination methods (Oksanen et al., 2013).

2.12.2 General linearized models between main causes and facilitators of disturbance and main response variables

To select meaningful variables to fit our GLMs, we inspected the NMDS and pRDA graph and selected a set of uncorrelated response variables based on the direction of the arrows in the graphs. We then compiled a set of predictor variables that correlated with each selected response and checked for correlation within each set, removing one of the elements in pairs with r > 0.7. In parallel, we merged all predictor sets and removed highly correlated and spatially autocorrelated variables. Once a set of consensus predictors was obtained, we conducted a VIF analysis (setting the threshold to 10) and obtained a reduced set of primary and secondary predictors (Table 2). We thus reduced the pool of geo-environmental variables to four, that of causes to four, and that of facilitators to seven. In addition, we selected response variables for level, including diversity metrics and indicators.

TABLE 2. Retained predictors for GLMs building
Predictors Responses
Geo-environmental Tree layer diversity
north northness TSR tree species richness
slope slope TPielou tree Pielou's evenness
mean_prec mean annual precipitation Tshann tree Shannon's diversity
mean_T mean annual temperature TsesPD tree standardized phylogenetic diversity
Causes TsesMPDABU abundance-weighted trees standardized mean pairwise distance
cult_50m cultivated fields in 50 m buffer TsesMNTDABU abundance-weighted trees standardized mean nearest taxon distance
cattle presence of cattle FDis Functional Dispersion
logg logging signs Feve Functional Evenness
protected pretected status FDiv Functional Divergence
Facilitators FRic Functional Richness
path_dist distance from closest path AGBplot plot above-ground biomass
house_dist distance from closest house Understory diversity
track_dist distance to closest track HSR understory species richness
edge the plot is located at the edge of the fragment Hpielou understory Pielou's evenness
age minimum age of the plot Hshann understory Shannon's diversity index
cattle_100 presence of cattle in 100 m buffer HsesPD understory standardized phylogenetic diversity
median_patch median forest patch size in 1 km buffer HsesMPDABU abundance-weighted understory standardized mean pairwise distances
Indicators HsesMNTDABU abundance-weighted understory standardized mean nearest taxon distances
n_inv_sp_T number of invasive species of trees
n_FST_sp_T number of fast-growing species of trees
n_FST_ind_T number of fast-growing species of trees individuals
%_n_CON_sp_T % of species of trees associated with conserved forests
Level
n_large_trees number of trees with DBH > 30 cm
n_stems number of stems
n_trees number of trees
n_sp > 10DBH number of species with DBH > 10 cm
Tree layer diversity
FDiv Functional divergence
FRic Functional richness
FDis Functional dispersion
FEve Functional evenness
Tshann Trees Shannon diversity index
TsesMPD Trees standardized mean pair distance
TsesMPDABU Abundance-weighted trees standardized mean pairwise distance
TMNTDABU Abundance-weighted trees standardized mean nearest taxon distance
AGBplot plot aboveground biomass

Note

  • Predictor categories refer to the groups of predictor variables categorized in (Appendix A2).

For each selected response, we identified the best conditional distribution and then performed automated selection of the optimal Generalized Linear Model (GLM) with the regsubsets function in the leaps package (Lumley & Lumley, 2013), unifying all groups of predictor variables. We specified a maximum number of predictors of four. Predictors were scaled, and a “log” link was specified in the family argument.

Thus, our GLMs related separately number of species (trees and understory), species diversity (Shannon and Pielou's indices for trees and understory), abundance-weighted phylogenetic diversity and structure (trees sesPD, sesMPDABU, sesMNTDABU; understory sesPD, sesMPDABU, sesMNTDABU), functional diversity (FDiv, FRic, FEve, FDis), and aboveground biomass (AGBplot) as response variables with selected explanatory variables among each group of predictors (geo-environmental causes and facilitators).

Second, we performed automated selection of the optimal GLMs with AGB, understory number of species, understory Shannon's and Pielou's indices, understory phylogenetic diversity and structure, as response variables and tree diversity indices, level and indicators of disturbance as sets of secondary predictor variables.

3 RESULTS

3.1 Plot-based species inventory of tree and understory layers

3.1.1 Tree layer

We recorded 9,841 tree individuals belonging to 98 taxa. From these, 89 were identified to species level, six to genus, one to family, and two lianas remained unidentified due to lack of leaves, flowers, or fruits required for identification (see the Appendix A3 for the complete list of species and collected herbarium vouchers). Identified taxa belonged to 64 genera and 41 families. The only conifer recorded in the study area was Podocarpus oleifolia, and the only tree fern was Blechnum schomburgkii.

Asteraceae (14 species), Melastomataceae, Ericaceae, Primulaceae (with 6 species each), Lauraceae, and Rosaceae (5) were found to be the most diverse families in the study area. Miconia squamulosa (1,194 individuals) and Cavendishia bracteata (1,130) were the most abundant species across the study area, followed by Weinmannia tomentosa (805) and Daphnopsis caracasana (522).

3.1.2 Understory layer

Overall, 326 understory taxa were recorded, with 266 of them identified to species level, 59 to genus, and one to family level (Appendix A3). Identified taxa belonged to 174 genera and 82 families. Orchidaceae (41 species), Asteraceae (38), and Polypodiaceae (16) were the most diverse families, followed by Piperaceae (13), Bromeliaceae (12), Melastomataceae (11), Dryopteridaceae (10), Ericaceae (9), and Rosaceae (9). Dryopteridaceae, Orchidaceae, Poaceae, Blechnaceae, and Bromeliaceae were the most abundant families.

3.2 Plot-based community ordination (NMDS, cluster analysis and Kruskal–Wallis test/ANOVA)

3.2.1 Tree layer

For the 3D ordination solution, we obtained a final stress value of 0.1160879 after 206 iterations. Visual interpretation of the NMDS graph led to the identification of three main groups. The subsequent cluster analysis revealed three additional groups, which showed deep divergence in the dendrogram (nodes at less than 50% remaining information), totaling six groups/clusters, which were used for the indicator species analysis (see Appendix A5 for further details on the indicator species analysis results).

The NMDS graph (Appendix A6) showed numerous statistically significant axis correlations of environmental variables including elevation, relative humidity, and mean temperature, while the Kruskal–Wallis test and parametric ANOVA showed that floristic differences among all groups were related to elevation (chi-sq = 25.94, p = .0009), mean temperature (chi-sq = 20.99, p = .0008), relative humidity (chi-sq = 25.71, p = .0001), presence of logging (chi-sq = 17.57, p = .0035), presence of cattle (chi-sq = 21.05, p = .0008), presence of cattle in a 50 m buffer (chi-sq = 15.90, p = .0071), presence of cultivated fields in a 100 m buffer (chi-sq = 23.94, p = .0002), Shannon's landscape diversity (F = 5.58, p = .0013), like adjacencies (chi-sq = 18.37, p = .0025), distance to roads (chi-sq = 19.45, p = .0016), and minimum age of the fragment (chi-sq = 11.95, p = .0355).

The resulting NMDS graphs highlighted some interesting patterns. The NMDS graph of axis 1 versus 2 depicted the variables linked to aboveground biomass (AGB), percentage of late successional species, DBH, height and minimum age on the right hand side, opposite to the variables linked to the number of fast-growing species of trees, mean exotic species cover in the understory, or to the number of trees and the number of stems in the plots (inverse correlation). In the same plot, the AGB showed high positive correlation with distances to roads, lichen cover in the canopy and mosses cover on the soil and inverse correlation with functional diversity, and Gini coefficient. Moreover, trees abundance-weighted mean nearest taxon distance (TMNTDABU) lied opposite to the indicators of fragmentation. A complete table of NMDS variable correlation filtered through species abundance can be found in Appendix A7.

3.2.2 Understory layer

For the 3D ordination solution, we obtained a final stress value of 0.1514607 after 20 iterations. Visual grouping within the NMDS graph was not feasible (Appendix A8). The cluster analysis identified five main groups/clusters selecting nodes at less than 20% remaining information. Indicator species analysis did not clearly separate the plot localities from each other (Appendix A5).

Kruskal–Wallis test and parametric ANOVA showed that floristic differences among all groups were related to elevation (chi-sq = 24.06, p = .0001), distance to roads (chi-sq = 14.23, p = .0066), edge density (F = 4.93, p = .004), presence of cultivated fields in a 100 m buffer (chi-sq = 23.93, p = .0002), mean tree AGB (chi-sq = 13.69, p = .01774), Shannon's landscape diversity (F = 3.04, p = .0343), people density in a 5 km buffer (chi-sq = 15.88, p = .0032), and presence of cultivated fields in a 500 m buffer (chi-sq = 8.35, p = .0797).

In the understory, elevation again was the most correlated environmental variable with species abundances (see Appendix A7 for details on variables correlation with NMDS axis). In the NDMS graph of axis 1 versus 2, the indicators of fragmentation, together with the presence of cattle and cultivated fields in the vicinity, were located opposite to the indicators of continuous forest cover and most of trees diversity metrics. AGB correlated directly with number of late successional species and distance to paths and tracks, and inversely with the number of fast-growing species of trees and exotic understory species. Most of understory diversity metrics pointed toward the lower part of the graphs, together with fragmentation indicators and exotic species cover in the understory, number of trees, stems, and fast-growing species of trees. Understory phylogenetic mean pairwise distances were correlated with AGB.

3.3 pRDA

3.3.1 Tree layer

From the set of 25 variables with Rsq > 0.35 (Table 1), after testing for redundancy, we limited our analysis to a subset of 10 variables: elevation, presence of logging, Shannon's landscape diversity, mean temperature, presence of cattle, presence of cultivated fields in a 100 m buffer, minimum fragment age, distance to roads, and presence of cattle in a 50 m buffer. The ordistep function selected seven of these: elevation, presence of logging, Shannon's landscape diversity, mean temperature, presence of cattle, minimum fragment age, and distance to roads.

The pRDA had an Rsq of 0.23 and adjusted Rsq of 0.17. The proportional conditional explained variance was 0.45, while the constrained explained variance was 0.24. The unconstrained explained variance was 0.31. Presence of cattle and lower distances to roads were associated with tree layer group 1 which was also positively correlated with Shannon's landscape diversity and negatively with elevation. Group 4 was defined by lower values of Shannon's landscape diversity and was positively correlated with minimum fragment age. Group 5 had some degree of negative correlation with minimum fragment age. Group 6 had an inverse correlation with elevation and minimum fragment age, and was associated with signs of logging, higher Shannon's landscape diversity, and absence of cattle. Groups 2 and 3 were not characterized by any particular association with the ordination variables (Figure 2).

Details are in the caption following the image
pRDA and Cluster analysis convex hulls of the tree layer. RDA graphs with convex hull volumes of tree layer groups for axis 1–2 (a), 2–3 (b), and 1–3 (c). (d) cluster dendrogram of plots species communities. Group 1 had Myrcianthes leucoxyla, Viburnum triphyllum, and Miconia elaeoides as statistically significant indicator species and comprised plots from Torca, Tabio, and Guatavita. Group 2 was characterized by Monticalia pulchella, Macleania rupestris, and Ilex kunthiana, and comprised plots exclusively from Pasquilla. Group 3 had Gaultheria anastomosans, Ageratina glyptophlebia, Buquetia glutinosa, Ageratina boyacensis, Berberis glauca, and Vaccinium floribundum as statistically significant indicator species, and comprised exclusively plots form Sumapaz. Group 4 was characterized by Myrsine coriacea and Clusia multiflora and included plots from Torca and Guasca. Group 5 included Cavendishia bracteata, Diplostephium rosmarinifolium, Gaiadendron punctatum, and Ulex europaeus, and comprised only plots from Guasca. Group 6 had Varronia cylindrostachia and Myrsine guianensis and included plots from Tabio and from Torca. For detailed IVI values and relative p-values refer to the Appendix A5

3.3.2 Understory layer

From the set of 38 variables with Rsq > 0.35 (Table 1), after the assessment of redundancy, we limited our analysis to a subset of 10: elevation, number of trees, edge density, Shannon's landscape diversity, mean tree aboveground biomass (mAGBT), presence of cultivated fields in a 500 m buffer, minimum fragment age, distance to roads, people density in a 5 km buffer, and fragment size. The ordistep function selected seven of these: elevation, edge density, Shannon's landscape diversity, mAGBT, presence of cultivated fields in a 500 m buffer, distance to roads, and people density in a 5 km buffer.

The pRDA had an Rsq of 0.26 and adjusted Rsq of 0.11. The proportional conditional explained variance was 0.29, while the constrained explained variance was 0.26. The unconstrained was 0.45.

The results of the pRDA indicated that group 1 was characterized by higher values of Shannon's landscape diversity, lower values for distance from roads, lower elevation, and lower edge density. In contrast with that, group 2 was linked with higher values for distance from roads, higher elevation, lower Shannon's landscape diversity, absence of cultivated fields in a 500 m buffer, and lower population density. Group 3 had lower values of mean tree biomass and higher values of population density. Group 5 was associated with lower values of mean tree biomass. Group 4 was not characterized by any particular association with the ordination variables (Figure 3).

Details are in the caption following the image
pRDA and Cluster analysis convex hulls of the understory. RDA graphs with convex hull volumes of understory groups for axis 1–2 (a), 2–3 (b), and 1–3 (c). (d) cluster dendrogram of plots species communities. The first group had Oreopanax incisus and Passiflora bogotensis as indicator species (Appendix A5) and included plots from Torca and Tabio. The second group had Elaphoglossum lingua as indicator species, including plots form Pasquilla, Guasca, and Torca. The third group had Monnina aestuans, Peperomia rotundata, and Nertera granadensis among higher valued indicator species. It included only two plots, one from Sumapaz and one from Pasquilla. The fourth group had Greigia stenolepis and Rubus acanthophyllos among indicator species and comprised plots from Sumapaz and Guasca. The last group had Ageratina asclepiadea as indicator species and comprised plots from Guatavita, Guasca, and Tabio. For detailed IVI values and relative p-values refer to the Appendix A5

3.4 Generalized linear models

A total of 15 primary predictors, 17 secondary predictors, and 17 responses were retained for GLM building (Table 2). Significant variables in GLMs with either a good fit (McFadden Rsq > 0.2) or a high Nagelkerke value (variance explained > 0.50) are reported below (Tables 3, 4 and 5). A complete table of all fitted GLMs is provided in Table S1. None of the variables associated with epiphytes cover was retained through the variable selection process and analysis.

TABLE 3. GLMs of predictors versus responses, showing only GLMs with a good fit
Response Best model Variable Coefficients Pseudo R2
Estimate SE t value p value (>|t|) McFadden Nagelkerke
Tshann Tshann ~ slope+mean_T + house_dist+cult_50m (Intercept) 0.70361 0.02540 27.699 <2e−16 0.752990 0.814632
slope −0.08664 0.02698 −3.211 .0034
mean_T −0.02686 0.02873 −0.935 .3580
house_dist −0.04705 0.02583 −1.822 .0796
cult_50m −0.04004 0.02870 −1.395 .1744
Hshann Hshann ~ track_dist+mean_prec + age+house_dist (Intercept) 0.89579 0.02215 40.441 <2e−16 0.669964 0.759986
track_dist 0.06937 0.02916 2.379 .024680
mean_prec 0.08776 0.02867 3.061 .004944
age −0.10445 0.02380 −4.389 .000157
house_dist −0.03438 0.02257 −1.523 .139413
AGB AGBplot ~ slope+age + cattle+cult_50m (Intercept) 1.7145 0.07224 23.734 <2e−16 0.150415 0.525516
slope −0.17248 0.07773 −2.219 .035092
age 0.31665 0.07803 4.058 .000379
cattle 0.23182 0.09783 2.370 .025207
cult_50m −0.23070 0.09631 −2.395 .023807

Note

  • Predictor categories refer to the groups of predictor variables categorized in the Appendix A2.
TABLE 4. GLMs of secondary predictors versus responses, showing only GLMs with a good fit
Response Best model Variable Coefficients Pseudo R2
Estimate SE t value p value (>|t|) McFadden Nagelkerke
Hshann Hshann ~ FDis+FRic + n_stems+n_inv_sp_T (Intercept) 0.89802 0.02507 35.825 <2e−16 0.370602 0.474078
FDis −0.07597 0.03485 −2.180 .0382
FRic 0.07827 0.03082 2.540 .0172
n_stems 0.03100 0.02455 1.262 .2176
n_inv_sp_T −0.04740 0.02916 −1.626 .1156
HsesMPDABU HsesMPDABU ~ FDiv+FRic + n_sp.10DBH + TsesMPDABU (Intercept) 0.82655 0.07123 11.605 5.32e−12 0.261149 0.581732
FDiv 0.24527 0.08248 2.974 .00613
FRic −0.26250 0.08501 −3.088 .00463
n_sp.10DBH 0.12922 0.07900 1.636 .11351
TsesMPDABU 0.15706 0.05962 2.634 .01380
AGB AGBplot ~ TsesMPD+n_large_trees + n_trees+%n_CON_sp_T (Intercept) 1.7140 0.07467 22.955 <2e−16 0.151863 0.528924
TsesMPD −0.06882 0.11824 −0.582 .56535
n_large_trees 0.36350 0.11200 3.246 .00312
n_trees 0.22454 0.10409 2.157 .04005
%n_CON_sp_T 0.29929 0.11420 2.621 .01423

Note

  • Predictor categories refer to the groups of predictor variables categorized in the Appendix A2.
TABLE 5. GLMs variables relationships: + indicates a positive relationship and − indicates a negative relationship. Higlighted cells represent GLMs with a good fit
TSR Tshann Tpielou TsesPD TsesMPDABU TsesMNTDABU HSR Hshann Hpielou HsesPD HsesMNTDABU HsesMPDABU FDis FDiv FEve FRic AGB
mean_T
mean_prec +
north +
slope
logg +
cattle +
cult_50m +
protected
edge + +
house_dist
cattle_100 +
median_patch
age +
track_dist +
n.sp_10DBH +
n_trees + +
n_large_trees +
%n_CON_sp_T +
n_FST_ind_T + +
n_stems +
FDiv + +
FRic + +
FDis
TsesMPDABU + +
TsesMPD +

Tree layer Shannon's diversity decreased with slope. Understory Shannon's diversity increased with distance to tracks, mean precipitation, and tree layer functional richness (FRic), but decreased with minimum age and functional dispersion (FDis). Understory abundance-weighted phylogenetic mean pairwise distances (HsesMPDABU) increased with functional divergence (FDiv) and tree layer abundance-weighted phylogenetic mean pairwise distances (TsesMPDABU) and decreased with FRic. Aboveground biomass (AGB) increased with increasing minimum age of the plot and presence of cattle within the plot, and decreased with slope and proximity of cultivated fields. AGB also increased with the number of trees and large trees and with the proportion of late successional species of tree.

3.4.1 Other general trends (from models without a good fit)

Among environmental predictors, slope had a negative effect on FDis, FRic, HsesMPDABU, tree layer species richness (TSR), tree layer Pielou's evenness (Tpielou), tree layer abundance-weighted mean phylogenetic nearest neighbor distance (TsesMNTDABU). Mean temperature had a negative effect on understory phylogenetic diversity (HsesPD) and Tpielou. Northness had a positive effect on TSR. Among the causes predictors, logging had negative effect on functional evenness (FEve) and TSR, and a positive effect on understory layer Pielou's evenness (Hpielou). The presence of cultivated fields in the immediate surrounding of plots (50 m) had a negative effect on HSR and TsesMNTDABU and a positive effect on understory abundance-weighted mean phylogenetic nearest neighbor distance (HsesMNTDABU). Protection status had a negative effect on HsesMNTDABU and tree layer phylogenetic diversity (TsesPD). As to the facilitators, the edge effect was linked with higher values of FDis and HsesMPDABU, and lower values of HsesMNTDABU, HsesPD, FDiv, and FRic. Increasing distance from houses had a negative effect on TSR, while increasing distance from tracks had negative effect on HsesPD. The presence of cattle in a 100 m buffer was linked to higher values of HsesMNTDABU, and lower values of tree layer abundance-weighted mean phylogenetic pairwise distance (TsesMPDABU) and TsesMNTDABU. Median patch size had negative effect on HSR. Increasing minimum fragment age had a negative effect on HPielou. Coming to the secondary predictors, the number of species with DBH > 10 cm and the number of trees had positive effect on HsesMNTDABU. The number of fast-growing trees species individuals had a positive effect on HsesMNTDABU and HsesPD. The number of stems had a positive effect on Hpielou. FDiv had a positive effect on HSR. FRic had negative effect on HsesMNTDABU and positive on HsesPD. FDis had a negative effect on HsesPD. Finally, TsesMPDABU had positive effect on HsesPD and TsesMPD had positive effect on Hpielou.

4 DISCUSSION

Pressure of urbanization on natural environments and its consequences has been the subject of numerous studies. However, high Andean forests (bosques altoandinos) have rarely been investigated in this context. Our study is the first to analyze the role of multiple factors in shaping environmental impact on these forests through urbanization and associated factors in the metropolitan area of Bogotá. However, we are aware of the limitations of this research, which is of rather explorative character and based on data from an area of in total 1.28 ha only. Our sampling design reflects the hurdles of working in a mixed urban–rural matrix, mostly privately owned. Also, having a limited number of plots, we decided to put a stronger emphasis on the variables filtering, to drastically reduce the number of tested hypotheses. Nevertheless, the studied forest fragments belong to several of the localities harboring the highest forest cover within the Capital District and we find the types of high Andean forests covered here to be representative for the hinterland of Bogotá.

Using the composition of natural vegetation as a benchmark, our study plots were dominated by Melastomataceae, Ericaceae, and Asteraceae in the tree layer, which is in accordance with previous work (Cuatrecasas, 1934, 1958; Franco et al., 2010; Torres & Marina, 2016). Bromeliaceae and Orchidaceae were the most diverse families in the understory, coinciding with reports by Cuatrecasas (1934, 1958) and Rangel et al. (2008). Notably, with the exception of Rangel et al. (2008), no recent inventories of the understory were undertaken in the target area prior to this study. The fact that many epiphytic species were found terrestrial in the understory may be due to certain favorable environmental conditions, such as low incidence of light, high humidity, and lower influence of wind than in the canopy (Krömer et al., 2007).

Overall tree species richness of the total area assessed (98) was similar to the 90 taxa reported by Rodríguez-Alarcón et al. (2018) for an ecologically similar study area near Bogotá. Van der Hammen (1998) reported 50–60 species for 500 m2 plots of high Andean forest in the watershed of the Rio Bogotá, 20–30 of which belonged to trees and shrubs. Our own tree species count ranged between 10 and 24, with an average of 16, per 400 m2 plot, and Shannon's tree diversity varied between 1.05 and 2.6. Overall, these figures also compare well to those reported for high Andean forest ecosystems (2,300–2,900 m) in Southern Ecuador by Cabrera et al. (2019), who used a higher DBH threshold (10 cm) and obtained about 21 tree species and an average value of 2.44 for Shannon's diversity.

Thus far, only few published studies exist for the target area that aimed at characterizing the various communities of bosques altoandinos in terms of species composition. Using a phytosociological approach, Cortés et al. (1999) and Cortés (2008) described the Myrcianthes leucoxyla-Miconia squamulosa community for the internal slopes of the Rio Bogotá watershed, characterized by scarce humidity and low precipitation, with high abundance of Oreopanax incisus and conspicuous lianas in the understory. This community corresponds to our tree clusters 1 and 6 and understory clusters 1 and 5. The pRDA further revealed a lower elevation, higher Shannon's landscape diversity, lower minimum fragment age, presence of logging and lower distance to roads as characteristic for this community, supporting the notion that it represents secondary forest, probably developing on patches of abandoned agricultural areas on the slopes surrounding cultivated and farmed plains (Cortés, 2008). Understory cluster 5 was generally found at medium elevations, on small high plains, with a drier climate (Cortés, 2008; Cortés et al., 1999), and in forest patches with generally low values of aboveground biomass.

The Drimys granadensis-Weinmannia tomentosa community is a second bosque altoandino subtype (Vargas & Zuluaga, 1980), corresponding to our tree clusters 2 and 4. Cluster 2 is similar to the Criotoniopsis bogotana-Weinmannia tomentosa forest subtypes described for elevations between 3,100 and 3,300 m (Cortés, 2008), whereas cluster 4 is found at the slopes and peaks of the watershed of the Río Bogotá between 2,700 and 3,200 m (Cortés, 2008). According to Cortés (2008) and Luteyn (2002), the presence of Macleania rupestris in the lower canopy of these communities points toward recent human intervention. This association is known to prefer humid, cold climates and steep grounds; according to our field observations, it is also associated with high lichen and moss cover in the canopy, which prosper in such a relatively high humidity (Batke et al., 2015; Munzi et al., 2014; Wolf, 1993). As shown in the pRDA ordination, it is also linked to low Shannon's landscape diversity, and higher minimum fragment age, probably representing secondary forest fragments approaching the structure of natural forest communities.

Our tree clusters 3 and 5 did not correspond to previously described communities. Cluster 3 was restricted to bosques altoandinos near Sumapaz, the largest known paramo on Earth. Characteristic elements of this cluster are families of high elevations such as Asteraceae and Ericaceae (Bach et al., 2007; Cuatrecasas, 1958; Sturm & Rangel, 1985), also typically found in areas subjected to fires or selective logging (Cuatrecasas, 1958). The latter notion is supported by the observed presence of both cattle and cultivated fields in the immediate surrounding, by a high Shannon's landscape diversity, and by the presence of logging, indicating recent and ongoing intervention in the area. Nonetheless, full-grown individuals of Weinmannia fagaroides and Polylepis quadrijuga were found in two of the plots of this cluster, together with some young individuals of Podocarpus oleifolia and Berberis glauca abundant in the lower canopy, and a dense cover of mosses and ferns, which suggests that some small “islands” of mature forest elements were able to persist within the disturbed, secondary forest matrix. Understory cluster 3 did not fit any previously described communities either, but the indicator species of this cluster are known to be either dispersed by birds, for example, Monnina aestuans (Romero, 2002) and Nertera granadensis (Vargas-Ríos, 1997), or by small mammals or birds, for example, in the case of the sticky fruits of Peperomia (Frenzke et al., 2016). Possibly, this cluster represents a successional understory community mainly dispersed by animals, which prosper in previously disturbed areas, as suggested by the high people density within 5 km radius and relatively low mean tree biomass. Tree cluster 5 was found in the Guasca region only and exhibits features of a disturbed, gap-filled forest (azonal páramo) including the presence of invasive Ulex europaeus, which is confirmed by the pRDA correlation with lower minimum fragment age values. Another common species, Cavendishia bracteata, has been associated with secondary growth (Cortés, 2008). This cluster had rather low like adjacencies values and average Shannon's landscape diversity and distances to roads, which point to a somehow continued disturbance regime in the past. Indeed, this area, up to the 1990s, used to be an open-pit limestone mine (Pèrez Sanz de Santamaría,  2013).

Notably, tree and understory communities found in the same plots did not always correspond to the same community's type, which suggests that different types of intervention act differentially on the tree and understory layers. For instance, cattle grazing, erosion, and expansion of edge species will affect the understory at a different pace than the tree layer (Halpern & Lutz, 2013; Millspaugh & Thompson, 2011; Thrippleton et al., 2016).

Our findings support the notion that bosques altoandinos in the vicinity of Bogotá are floristically and structurally not homogeneous, resulting in overall high species diversity, especially in the understory, with each of the study sites and plots contributing a portion to this diversity (i.e., high beta diversity). The observed differences in species composition between the study sites, and the high proportion of pRDA-explained variance that was linked to the “locality” condition, may be determined by topographic variation, which promotes changes in structure, composition, and dynamics of the vegetation, even at small scales in high Andean ecosystems (Homeier et al., 2010; López & Duque, 2010). Our results are similar to a recent study that found substantial differences in species composition between municipalities in the region (Hurtado-Martilletti et al., 2020), pointing toward the importance of landscape and habitat heterogeneity as a relevant criterion when assessing the impact of urbanization, since each locality may contribute unique elements of diversity not present at other localities, even within close distances. Following up on our first research question, taken aside the effects of local homogenization processes, our data show that plant communities in bosques altoandinos are mainly driven by a limited suite of geo-environmental and disturbance factors, namely: elevation, mean temperature and relative humidity on one hand, and by the presence of cultivated fields and cattle in the immediate sourroundings of the plots, population density, Shannon's landscape diversity, and forest edge density on the other.

The compositionally based clustering of tree and understory communities was largely correlated with both geo-environmental and disturbance variables, namely, elevation, people density, Shannon's landscape diversity and distance to roads. Mean temperature, relative humidity, logging, and minimum plot age were important factors driving tree species composition, but not the composition of understory species. For the latter, additional variables associated with edge effects, such as the proximity to cultivated fields, edge density, and distance from main roads were relevant. Additionally, mean tree aboveground biomass was a determinant factor in shaping the understory community. These results support the notion of a higher sensitivity of the understory to fragmentation and habitat heterogeneity (Forman & Alexander, 1998; Tyser & Worley, 1992).

Our results show effects of both geo-environmental parameters and disturbance-related variables as predictors of both community structure and diversity. Among the geo-environmental parameters, the negative effects of the increase in slope on tree and understory diversity and aboveground biomass were evident. Slope is related to soil erosion, water drainage, and other unfavorable growth conditions which may act as environmental filters, reducing the number of taxa that can cope with them effectively and may also limit aboveground productivity. Higher mean temperatures were linked to lower tree Pielou's evenness and Understory phylogenetic diversity. This fact could be linked to the higher density of human activities at milder temperatures/lower parts of our study area, which are associated with highly disturbed forest communities, mostly dominated by species as Miconia squamulosa or Cavendishia bracteata, and host poorer understory communities. Higher precipitation values were linked to higher understory Shannon's diversity, possibly due to increased soil nutrients and moisture and thus by the absence of an environmental filter related to water availability.

With regard to human disturbance predictors, many of the previously identified relevant variables in literature were also selected through our multi-step analysis, such as minimum age of the forest fragment, distance to houses, edge effect, and presence or proximity of cattle and cultivated fields. People density, on the other hand, showed to be too spatially autocorrelated to be used in our GLMs. Also, among all calculated forest fragmentation metrics, the only one which was selected was (median) forest patch size, already reported to be relevant for plant diversity as an indirect measure of habitat loss in the review of Fahrig (2003). As to the selected responses, tree layer diversity metrics were not particularly sensitive, retrieving only one GLM with a good fit. The correlation between higher distance from houses and forest protection status with lower tree species richness and low phylogenetic diversity was not immediately intuitive, but could be a sign of the deliberate introduction of useful tree species in the vicinity of rural houses, to be harvested for wood or other uses, or of the lack of edge-related tree species in the interior of protected forest fragments. However, the presence of cattle and cultivated fields in the immediate proximity of plots leading to tree phylogenetic clustering, but on the other hand to understory phylogenetic dispersion, illustrates the disrupting, multi-layer impact of landscape-level patchiness and human activities.

Disturbed forests tend to exhibit functional and phylogenetical clustering due to the elimination of entire lineages sensible to disturbance, an effect known as environmental filtering (Chun & Lee, 2018; Gerhold et al., 2015; Kusuma et al., 2018; Mouchet et al., 2010; Ribeiro et al., 2016). Phylogenetic dispersion is expected to be higher in undisturbed, more mature forests than in early successional forests, due to competitive exclusion (Ding et al., 2012; Letcher, 2009; Norden et al., 2012; Purschke et al., 2013). In our study, local, chronic disturbances, such as proximity to farming activities or the presence of cattle in the immediate surroundings, had indeed a negative effect on tree phylogenetic diversity and resulted in phylogenetic clustering, supporting findings by Ribeiro et al. (2015, 2016). Likely, the floristic drift associated with this type of disturbance results in the co-occurrence of more closely related taxa by decreasing effects of competitive exclusion. On the other hand, the observed increase of phylogenetic dispersion in the understory in close proximity of cattle or cultivated fields may be the result of opportunistic pioneer or exotic species, which introduce different lineages from those associated with more mature forest fragments (Hill & Curran, 2001; Kupfer et al., 2004).

Identified understory diversity metrics with the highest sensitivity to human disturbance were Shannon's diversity and phylogenetic clustering. As suggested by Forman and Alexander (1998) and Tyser and Worley (1992), the number and diversity of understory species were positively related to disturbance-related variables. Proximity to human activities such as farming and the more recent establishment of forest patches (lower minimum age) fosters generalists or fast-growing, nutrient-, and light-demanding species (Marcantonio et al., 2013). However, at the same time the edge effect promotes less phylogenetic diversity of the understory vegetation, which is in accordance with Ribeiro et al. (2016). This could be explained, in our case, by the fact that ferns and other early diverging taxa diversity tends to diminish toward the edge of a forest fragment to leave place to generalists and agricultural weeds, which can cope better with the site conditions. Larger median forest fragments size also resulted in less understory species, suggesting that recruitment of edge-related species increment the number of species in smaller forest patches.

The observation that increasing tree functional divergence, and tree phylogenetic dispersion were linked to higher understory phylogenetic dispersion, may indicate that higher trait diversity in the upper stratum allows for more species to colonize the understory. This is partially supported through similar findings by Ampoorter et al. (2014) and Evy et al. (2016), who reported that a multi-tree species mixture may induce a higher number of understory species, for instance, by modifying environmental conditions relevant to herbaceous plants and seedlings (Vockenhuber et al., 2011). At the same time, functional richness and functional dispersion showed contrasting effects on understory metrics, underlining the multifaceted effect of the multidimensional functional diversity indices. Moreover, the number of trees, large trees, fast-growing tree individuals, and stems were related to higher understory phylogenetic diversity and dispersion, and to understory Pielou's evenness, confirming that intrastand heterogeneity allows for different understory taxa to thrive due to differences in nutrients, light and water availability (Huebner et al., 1995).

Averaging 149 Mg/ha, the obtained values for aboveground biomass are within the figures reported from other high Andean forest fragments, ranging between 130 and 165 Mg/ha and in some cases up to 640 Mg/ha (Álvarez-Dávila et al., 2017; Girardin et al., 2014; Rodríguez-Alarcón et al., 2018). The relatively low mean values obtained here are probably explained by the inclusion of areas characterized by early regeneration stages in several plots. However, our results are higher than those of Moser et al. (2011), who reported 112 Mg/ha for forest plots within a similar elevation range. In regard to our models, AGB seemed to decrease at higher values of slope, which in our study area may relate to eroded soils and drier conditions, supporting a trend that has been reported for relatively moist forests in the Americas (Keith et al., 2009; Stegen et al., 2011), which is perhaps related to the lower soil water content available to sustain photosynthesis (Parton et al., 2012; Stegen et al., 2011), but that can also be a secondary effect of the different rate of agricultural exploitation or forest clearing history between lower and drier and higher and wetter soils in the study area in recent times (Etter et al., 2008; Etter & van Wyngaarden, 2000). Notably, low AGB was linked to the proximity of cultivated fields, suggesting a clear correlation between intervention causing patchy landscapes and lower biomass accumulation. However, the presence of cattle within the plot was linked to higher AGB values. This may be particular to our study area, in which we observed forest fragments with large trees but a much depauperate understory, located in proximity to farms. This is alarming as grazing may interfere with tree species recruitment and stamping may lead to higher soil erosion which in turn will reduce productivity over time in these last standing carbon stock fragments (Nepstad et al., 2002).

The positive correlation that AGB exhibits with the minimum fragment age, and number of trees and large trees, summed to a positive correlation with the percentage of late successional tree species, suggests that AGB is positively influenced by the abundance of slow-growing species that stock large amount of carbon (Aldana et al., 2017; Álvarez-Dávila et al., 2017). This finding relates to the question of biomass storage in forest plantations or tree monocultures. Conversely, the increment of environmental stressors in highly fragmented landscapes can increase the mortality of large trees (D'Angelo et al., 2004; Laurance et al., 2000). This promotes the uncontrolled growth of fast-growing species with lower wood density, which reduces AGB (Berenguer et al., 2014; Chaplin-Kramer et al., 2015; Laurance & Bierregaard, 1997; de Paula et al., 2011).

In conclusion, the increase of disturbance resulted overall in a negative effect on tree phylogenetic diversity and dispersion. Notably, disturbance affected aboveground biomass negatively. As to the understory, disturbance was associated with more diversity and more phylogenetic dispersion. The causes and the facilitators category variables were quite efficient in predicting diversity or AGB, among which edge effect, proximity of cattle and cultivated fields, and minimum fragment age appear to be the most important ones.

The plurality of diversity metrics can be difficult to interpret in the light of human disturbance. However, AGB proved to be sensitive to human disturbance and was closely related with the proportion of late successional species. Such indicators could serve as immediate proxies of human disturbance, rather than diversity measures themselves, which have also been shown to react ambiguously to the effects of fragmentation (Fahrig, 2003).

5 CONCLUSIONS

In summary, our study on taxonomic, phylogenetic, functional diversity and ABG of high Andean forest underscores the complexity and singularity of interactions between disturbance drivers and plant communities. The main goal of our approach was to test and quantify the alteration of high Andean forest composition, structure, and functioning through human disturbance, testing the effectiveness of known relevant drivers and indicators when a large number of variables are considered simultaneously. We contributed to the characterization of high Andean patterns of tree and understory diversity and local and regional human disturbance, which is usually considered to have a negative effect on native biodiversity and carbon storage. In our case, this fact was confirmed by lower tree layer diversity and a lower ABG in relation to increasing human disturbance, but was however not always apparent through the score of all the diversity metrics that we employed. Decline of AGB and disappearance of the forest ecosystem's late successional species is a warning signal that should impulse protection efforts and restoration measures. Yet, it is also true that the study area has now undergone anthropic disturbance over centuries, with continuous agropastoral activities and subsequent land cover change. In the context of the recovery of forest cover and ecosystem services, then our findings could be interpreted as a positive sign of resilience at a regional scale. Relatively small isolated fragments of high Andean forests can still host high plant diversity and serve as stepping stones or temporary refuges for the local fauna within the rural modified matrix. In this sense, efforts to implement forest connectivity and corridors and to guarantee land-use continuity even in partially forested areas are priorities that should be taken into account by local decision-makers. Successful conservation strategies require a sound understanding of community and ecosystem dynamics, and we hope that with the predictors and indicators of disturbance that we pointed out, it will be possible to improve the management strategies for the passive or active restoration and protection of the remaining forest fragments in the study area.

Our results contribute to urgently needed but yet missing baseline knowledge on main drivers of disturbance and its effects on the biodiversity in the study area. However, we strongly recommend that future studies should expand further the established plot network and that more investigations test our results on similar ecosystems to further disentangle the relationship between natural and human-induced causes of diversity loss and their underlying mechanisms. As shown here, a first approximation can be achieved through an exploratory approach like the one that we employed.

ACKNOWLEDGMENTS

We thank our colleagues at the herbarium of the Jardín Botánico de Bogotá José Celestino Mutis (JBB) for the logistic support, their help in the identification of plant material, and valuable comments. We are also grateful for the support from local contacts in Torca, Sumapaz, and Pasquilla. We thank the Sintrapaz association and the Colegio Nuevo Horizonte for their kindness and collaboration. Finally, we thank everybody who participated in field data collection and collation of this study. We also thank Ana Belén Hurtado-Martilletti and Natalia Norden for their help and feedback on earlier versions of this study. We are grateful for the valuable comments from two anonymous reviewers that helped to improve this manuscript.

    CONFLICT OF INTEREST

    None declared.

    AUTHOR CONTRIBUTIONS

    Mariasole Calbi: Conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (lead); writing–original draft (lead); writing–review and editing (lead). Francisco Fajardo-Gutiérrez: Data curation (supporting); formal analysis (supporting); investigation (supporting); methodology (supporting); writing–original draft (supporting); writing–review and editing (supporting). Juan Manuel Posada: Conceptualization (equal); data curation (equal); investigation (supporting); methodology (lead); project administration (equal); resources (equal); visualization (equal); writing–original draft (supporting); writing–review and editing (supporting). Robert Lücking: Conceptualization (equal); data curation (supporting); formal analysis (equal); investigation (equal); methodology (lead); supervision (equal); writing–original draft (equal); writing–review and editing (equal). Grischa Brokamp: Funding acquisition (equal); methodology (supporting); project administration (lead); resources (equal); supervision (equal); writing–original draft (equal); writing–review and editing (supporting). Thomas Borsch: Conceptualization (supporting); funding acquisition (lead); investigation (equal); methodology (equal); project administration (equal); resources (equal); supervision (lead); writing–original draft (equal); writing–review and editing (supporting).

    APPENDIX A1

    Plots localities and coordinates

    Plot Locality Sector Latitude Longitude Elevation
    M1 Torca La Francia 4°47′12.1″ −74°1′34.2″ 2,664 m
    M2 Pasquilla Finca Porras 4°26′16.6″ −74°10′09.4″ 3,216 m
    M3 Torca La Francia 4°47′11.5″ −74°01′32.8″ 2,692 m
    M4 Torca Colegio Nuevo Horizonte 4°48′01.6″ −74°01′42.5″ 2,639 m
    M5 Torca Colegio Nuevo Horizonte 4°48′1″ −74°1′41.1″ 2,668 m
    M6 Pasquilla Finca Porras 4°26′14.4″ −74°10′14.7″ 3,278 m
    M7 Sumapaz Predio Hernan 4°2′10.5″ −74°17′47.6″ 3,402 m
    M7bis Sumapaz Predio Alexandra 4°2′7.7″ −74°18′1.2″ 3,395 m
    M8 Sumapaz Predio Hernan 4°2′9.2″ −74°17′51″ 3,390 m
    M8bis Sumapaz Predio Alexandra 4°2′8.0″ −74°18′2.1″ 3,387 m
    M9bis Pasquilla Finca Alveiro 4°26′53.3″ −74°10′21.2″ 3,313 m
    M10 Pasquilla Finca Alveiro 4°26′55.9″ −74°10′19.7″ 3,307 m
    R1 Guatavita predio Juan 4°56′9.716″ −73°53′54.237″ 3,035 m
    R2 Guatavita predio Juan 4°56′12.618″ −73°53′51.825″ 3,028 m
    R3 Guasca Encenillo 4°47′20.3172″ −73°54′31.8132″ 3,140 m
    R4 Guasca Encenillo 4°47′28.667″ −73°54′25.886″ 3,085 m
    R5 Guasca Encenillo 4°47′24.124″ −73°54′31.332″ 3,106 m
    R6 Guasca Encenillo 4°47′26.609″ −73°54′25.904″ 3,095 m
    R7 Tabio Predio suizo 4°55′40.858″ −74°6′29.194″ 2,696 m
    R8 Tabio Predio suizo 4°55′47.149″ −74°6′31.021″ 2,707 m
    R9 Tabio Predio suizo 4°55′33.961″ −74°6′47.225″ 2,821 m
    R10 Tabio Predio suizo 4°55′31.683″ −74°6′31.579″ 2,685 m
    R11 Torca Conjunto floresta 4°48′48.674″ −74°0′58.527″ 2,945 m
    R12 Torca Conjunto floresta 4°48′47.937″ −74°0′56.997″ 2,965 m
    R13 Torca Conjunto floresta 4°48′31.216″ −74°1′19.178″ 2,708 m
    R14 Torca Conjunto floresta 4°48′45.912″ −74°0′58.852″ 2,847 m
    R15 Guasca Predio Rosita 4°47′16.5″ −73°54″15.4″ 3,056 m
    R16 Guasca Predio Rosita 4°47′05.2″ −73°54′13.8″ 3,101 m
    R17 Torca Conjunto portal de Fusca 4°49′30.41″ −74°01′02.49″ 3,080 m
    R18 Torca Conjunto portal de Fusca 4°50′00.37″ −74°01′08.96″ 2,789 m
    R19 Tabio Predio suizo 4°55′31.79″ −74°06′44.42″ 2,736 m
    R20 Tabio Predio suizo 4°55′35.03″ −74°06′40.15″ 2,737 m

    APPENDIX A2

    Variables used for the preliminary analysis (NMDS)

    Variable acronym Variable full name PRED/RESP Type Unit Source
    east eastness = sin(aspect) PRED ENV DEM
    elev elevation PRED ENV m DEM
    mean_prec mean annual precipitation (1981–2010) PRED ENV mm IDEAM
    mean_T mean annual temperature (1981–2010) PRED ENV C IDEAM
    north northness = cos(aspect) PRED ENV DEM
    rel_hum relative humidity (1981–2010) PRED ENV % IDEAM
    sol_rad solar radiation (1981–2010) PRED ENV kW/m2 IDEAM
    cattle cattle inside the plot PRED CAU 0/1 Field survey
    cattle_50m; cattle_100, cattle_500 cattle in 50, 100 or 500 m from the plot PRED CAU 0/1 Field survey
    tour tourism inside the plot PRED CAU 0/1 Field survey
    logg logging sings inside the plot PRED CAU 0/1 Field survey
    other conservation activities inside the plot PRED CAU 0/1 Field survey
    protected protection status PRED CAU 0/1 Field survey
    age Minimum age of plot PRED FAC years Aerial pictures: IGAC
    cult_50m; cult_100; cult_500 cultivated fields in 50, 100 and 500 m PRED FAC 0/1 Field survey
    edge if the plot was located in the edge = 1, or interior = 0 of fragment PRED FAC 0/1 Edge until 50 m
    edge_density Edge density in 1 km buffer PRED FAC m/ha LC LANDSAT 8 Raster
    edge_lenght Edge length in 1 km buffer PRED FAC km LC LANDSAT 8 Raster
    effective_meshsize Effective Meshsize in 1 km buffer PRED FAC ha LC LANDSAT 8 Raster
    fractal_dimesion_index Fractal Dimension Index in 1 km buffer and 500 m PRED FAC LC LANDSAT 8 Raster
    fragment Fragment size PRED FAC km2 Bing maps
    greatest_patch Greatest patch area in 1 km buffer and 500 m PRED FAC Ha LC LANDSAT 8 Raster
    land_cover Land Cover in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    landscape_division Landscape division in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    landscape_pielou Pielou's landscape equitability in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    landscape_porportion Landscape Proportion in 1 km buffer PRED FAC % LC LANDSAT 8 Raster
    landscape_shannon Shannon,s landscape diversity in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    landscape_simpson Simpson's landscape diversity in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    largest_patch_index Largest Patch Index in 1 km buffer PRED FAC % LC LANDSAT 8 Raster
    like_adjacencies Like adjacencies in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    m_patchshape_ratio Mean patch shape ratio in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    mean_patch Mean patch area in 1 km buffer PRED FAC ha LC LANDSAT 8 Raster
    median_patch Median patch area in 1 km buffer PRED FAC ha LC LANDSAT 8 Raster
    n_patches Number of Patches in 1 km buffer and 500 m PRED FAC n LC LANDSAT 8 Raster
    nn_distance Euclidean Nearest-Neighbor Distance in 1 km buffer PRED FAC m LC LANDSAT 8 Raster
    overall_core Overall Core area in 1 km buffer PRED FAC m LC LANDSAT 8 Raster
    patch_cohesion_index Patch cohesion index in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    patch_density Patch density in 1 km buffer PRED FAC LC LANDSAT 8 Raster
    path_dist distance from path PRED FAC m BING map
    people_density_1km; people_density_5km population density in 1 km buffer and 5 km around the plots PRED FAC n/ha WordPop
    road_dist distance to main roads or not main roads PRED FAC m DANE
    slope slope in percent PRED FAC % DEM
    smallest_patch Smallest patch area in 1 km buffer PRED FAC ha LC LANDSAT 8 Raster
    splitting_index Splitting Index in 1 km buffer and 500 m PRED FAC LC LANDSAT 8 Raster
    track_dist distance from track PRED FAC m BING map
    m_cov_inv_U mean cover of understory exotic/invasive species RESP IND % Field survey
    m_cov_nat_U mean cover of native species RESP IND % Field survey
    n.10DBH; n.20DBH number of individuals of trees with DBH > than 10 or 20 cm RESP IND n Field survey
    n_CON_sp_T; n_CON_ind_T number of late successional tree species and individuals RESP IND n Field survey
    n_FST_sp_T; n_FST_ind_T number of fast-growing tree species and individuals RESP IND n Field survey
    n_inv_sp_T; n_inv_sp_U number of exotic/invasive tree and understory species RESP IND n Field survey
    n_large_trees number of large trees (DBH > 30 cm) RESP IND n Field survey
    n_sp.10DBH; n_sp.20DBH number of species of trees with DBH > than 10 or 20 cm RESP IND n Field survey
    n_stems number of stems RESP IND n Field survey
    n_trees number of trees (individuals) RESP IND n Field survey
    stems_tree mean number of stems per each tree individual RESP IND n Field survey
    %n_CON_sp_T; %n_CON_ind_T %of total late successional tree species and individuals RESP IND % Field survey
    AGBplot total aboveground biomass per plot RESP LEV ton Field survey
    DBH_var DBH variance RESP LEV cm Field survey
    FD Functional Diversity RESP LEV Field survey
    FDis Functional Dispersion RESP LEV Field survey
    FDiv Functional Evenness RESP LEV Field survey
    FEve Functional Divergence RESP LEV Field survey
    FRic Functional Richness RESP LEV Field survey
    Giniun; Giniwe Gini unweighted and weighted coefficient for basal areas of single trees RESP LEV Field survey
    H_var canopy height variance RESP LEV m Field survey
    m_DBH mean DBH RESP LEV cm Field survey
    m_H_understory mean understorey height RESP LEV % Field survey
    mAGBT mean AGB per tree RESP LEV kg Field survey
    max_H maximum tree height RESP LEV m Field survey
    mbrioT; mbrioC mean briophytes cover in trunk and canopy RESP LEV 0–3 Field survey
    mbroT; mbroC mean bromeliads cover in trunk and canopy RESP LEV 0–3 Field survey
    mcobT; mcobC mean epiphyte cover trunk and canopy RESP LEV 0–3 Field survey
    morqT; morqC mean orchids cover in trunk and canopy RESP LEV 0–3 Field survey
    mliqT; mliqC mean lichens cover in trunk and canopy RESP LEV 0–3 Field survey
    mhelT; mhelC mean ferns cover in trunk and canopy RESP LEV 0–3 Field survey
    mCWD mean coarse woody debris cover RESP LEV % Field survey
    mean_H mean canopy height RESP LEV m Field survey
    mmoss mean moss cover RESP LEV % Field survey
    msoil mean soil cover RESP LEV % Field survey
    mundstr mean understorey cover RESP LEV % Field survey
    TMNTD; HMNTD Trees and understory mean nearest taxon distance RESP LEV Field survey
    TMNTD-ABU; HMNTD-ABU Trees and understory mean nearest taxon distance (abundance weighted) RESP LEV Field survey
    TMPD; HMPD Trees and understory mean pairwise distances RESP LEV Field survey
    TMPD-ABU; HMPD-ABU Trees and understory mean pairwise distances (abundance weigthed) RESP LEV Field survey
    TPD; HPD Trees and understory Phylogentic diversity index RESP LEV Field survey
    TPIELOU; HPIELOU Tree and understory Pielou's evenness RESP LEV n Field survey
    TsesMNTD; HsesMNTD Trees and understory standardized mean nearest taxon distance RESP LEV Field survey
    TsesMNTD-ABU; HsesMNTD_ABU Trees and understory standardized mean nearest taxon distance (abundance weighted) RESP LEV Field survey
    TsesMPD; HsesMPD Trees and understory standardized mean pairwise distances RESP LEV Field survey
    TsesMPD-ABU; HsesMPD-ABU Trees and understory standardized mean pairwise distances (abundance weighted) RESP LEV Field survey
    TsesPD; HsesPD Trees and understory standardized phylogentic diversity index RESP LEV Field survey
    Tshann; Hshann Trees and understory Shannon's diversity index RESP LEV Field survey
    Tsimp; Hsimp Trees and understory Simpson's diversity index RESP LEV Field survey
    TSR; HSR Tree and understory species count RESP LEV n Field survey
    RaoQ Rao's Q functional diversity RESP LEV Fieldsurvey
    %_5;%_all percent of the 5 more abundant and all tree species found in the understory RESP LEV % Field survey
    • Abbreviations: CAU, causes of disturbance; ENV, geo-environmental; FAC, facilitators of disturbance; IND, indicators of disturbance; LEV, level of disturbance; PRED, predictor; RESP, response.

    APPENDIX A3

    List of taxa of the tree and understory layer and list of plot-resolved collected vouchers

    TREES

    Accepted name Accepted author Accepted family
    Abatia parviflora Ruiz & Pav. Salicaceae
    Ageratina asclepiadea (L.f.) R.M.King & H.Rob. Asteraceae
    Ageratina boyacensis R.M.King & H.Rob. Asteraceae
    Ageratina fastigiata (Kunth) R.M.King & H.Rob. Asteraceae
    Ageratina glyptophlebia (B.L.Rob.) R.M.King & H.Rob. Asteraceae
    Ageratina tinifolia (Kunth) R.M.King & H.Rob. Asteraceae
    Aiouea dubia (Kunth) Mez Lauraceae
    Aiouea sp Lauraceae
    Alnus acuminata Kunth Betulaceae
    Baccharis macrantha Kunth Asteraceae
    Baccharis prunifolia Kunth Asteraceae
    Barnadesia spinosa L.f. Asteraceae
    Bejaria resinosa Mutis ex L.f. Ericaceae
    Berberis glauca Kunth Berberidaceae
    Blechnum schomburgkii (Klotzsch) C. Chr. Blechnaceae
    Bocconia frutescens L. Papaveraceae
    Bucquetia glutinosa (L. f.) DC. Melastomataceae
    Carica sp Caricaceae
    Cavendishia bracteata (Ruiz & Pav. ex J.St.Hil.) Hoerold Ericaceae
    Cavendishia nitida (Kunth) A.C.Sm. Ericaceae
    Cedrela montana Moritz ex Turcz. Meliaceae
    Cestrum buxifolium Kunth Solanaceae
    Cestrum sp Solanaceae
    Citharexylum sulcatum Moldenke Verbenaceae
    Clethra fagifolia Kunth Clethraceae
    Clethra fimbriata Kunth Clethraceae
    Clethra lanata M.Martens & Galeotti Clethraceae
    Clusia multiflora Kunth Clusiaceae
    Critoniopsis bogotana (Cuatrec.) H.Rob. Asteraceae
    Croton bogotanus Cuatrec. Euphorbiaceae
    Cybianthus iteoides (Benth.) G.Agostini Primulaceae
    Daphnopsis caracasana Meisn. Thymelaeaceae
    Diplostephium ochraceum (Kunth) Nees Asteraceae
    Diplostephium rosmarinifolium (Benth.) Wedd. Asteraceae
    Drimys granadensis L.f. Winteraceae
    Duranta mutisii L.f. Verbenaceae
    Escallonia myrtilloides L.f. Escalloniaceae
    Escallonia paniculata (Ruiz & Pav.) Schult. Escalloniaceae
    Frangula goudotiana (Triana & Planch.) Grubov Rhamnaceae
    Frangula sphaerosperma (Sw.) Kartesz & Gandhi Rhamnaceae
    Gaiadendron punctatum (Ruiz & Pav.) G.Don Loranthaceae
    Gaultheria anastomosans (Mutis ex L.f.) Kunth Ericaceae
    Hediosmum sp Chloranthaceae
    Hesperomeles ferruginea (Pers.) Benth. Rosaceae
    Hesperomeles goudotiana (Decne.) Killip Rosaceae
    Hesperomeles obtusifolia (Pers.) Lindl. Rosaceae
    Ilex kunthiana Triana Aquifoliaceae
    Ilex sp Aquifoliaceae
    Lippia hirsuta L.f. Verbenaceae
    Macleania rupestris (Kunth) A.C.Sm. Ericaceae
    Macrocarpaea glabra (L. f.) Gilg Gentianaceae
    Maytenus laxiflora Triana & Planch. Celastraceae
    MELASTOMATACEAE sp Melastomataceae
    Miconia elaeoides Naudin Melastomataceae
    Miconia ligustrina (Sm.) Triana Melastomataceae
    Miconia squamulosa Triana Melastomataceae
    Myrcianthes leucoxyla (Ortega) McVaugh Myrtaceae
    Myrcianthes rhopaloides (Kunth) McVaugh Myrtaceae
    Morella parvifolia (Benth.) Parra-Os. Myricaceae
    Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur Myricaceae
    Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. Primulaceae
    Myrsine dependens (Ruiz & Pav.) Spreng. Primulaceae
    Myrsine guianensis (Aubl.) Kuntze Primulaceae
    Myrsine latifolia (Ruiz & Pav.) Spreng. Primulaceae
    Myrsine pellucida (Ruiz & Pav.) Spreng. Primulaceae
    Ocotea caesariata van der Werff Lauraceae
    Ocotea heterochroma Mez & Sodiro Lauraceae
    Oreopanax bogotensis Cuatrec. Araliaceae
    Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. Araliaceae
    Palicourea angustifolia Kunth Rubiaceae
    Palicourea demissa Standl. Rubiaceae
    Palicourea lineariflora Wernham Rubiaceae
    Pentacalia sp Asteraceae
    Monticalia pulchella (Kunth) C.Jeffrey Asteraceae
    Persea ruizii J.F.Macbr. Lauraceae
    Phyllanthus salviifolius Kunth Phyllanthaceae
    Piper bogotense C.DC. Piperaceae
    Podocarpus oleifolius D.Don Podocarpaceae
    Polylepis quadrijuga Bitter Rosaceae
    Prunus buxifolia Koehne Rosaceae
    Psychotria boqueronensis Wernham Rubiaceae
    Sessea corymbiflora Goudot ex Rich. Taylor & R. Phillips Solanaceae
    Solanum cornifolium Dunal Solanaceae
    Symplocos theiformis (L. f.) Oken Symplocaceae
    Tibouchina grossa (L. f.) Cogn. Melastomataceae
    Ulex europaeus L. Fabaceae
    Vaccinium floribundum Kunth Ericaceae
    Valeriana clematitis Kunth Caprifoliaceae
    Vallea stipularis L.f. Elaeocarpaceae
    Cordia cylindrostachya (Ruiz & Pav.) Roem. & Schult. Boraginaceae
    Verbesina arborea Kunth Asteraceae
    Viburnum tinoides L.f. Adoxaceae
    Viburnum triphyllum Benth. Adoxaceae
    Weinmannia fagaroides Kunth Cunoniaceae
    Weinmannia tomentosa L.f. Cunoniaceae
    Xylosma spiculifera (Tul.) Triana & Planch. Salicaceae
    • Late successional.
    • a Exotic.
    • b Fast-growing.

    UNDERSTORY

    Accepted name Accepted author Accepted family
    Acaena cylindristachya Ruiz & Pav. Rosaceae
    Achyrocline satureioides (Lam.) DC. Asteraceae
    Adiantum andicola Liebm. Pteridaceae
    Ageratina asclepiadea (L.f.) R.M.King & H.Rob. Asteraceae
    Ageratina boyacensis R.M.King & H.Rob. Asteraceae
    Ageratina glyptophlebia (B.L.Rob.) R.M.King & H.Rob. Asteraceae
    Ageratina gracilis (Kunth) R.M.King & H.Rob. Asteraceae
    Ageratina tinifolia (Kunth) R.M.King & H.Rob. Asteraceae
    Agrostis perennans (Walter) Tuck. Poaceae
    Alansmia sp Grammitidaceae
    Alnus acuminata Kunth Betulaceae
    Alonsoa meridionalis (L.f.) Kuntze Scrophulariaceae
    Anchietea frangulifolia (Kunth) Melch. Violaceae
    Anthoxanthum odoratum L. Poaceae
    Anthurium caramantae Engl. Araceae
    Arracacia sp Apiaceae
    Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. Poaceae
    Asplenium cladolepton Fée Aspleniaceae
    Asplenium monanthes L. Aspleniaceae
    Asplenium praemorsum Sw. Aspleniaceae
    Asplenium radicans L. Aspleniaceae
    Asplundianthus densus (Benth.) R.M.King & H.Rob. Asteraceae
    ASTERACEAE sp Asteraceae
    Athyrium filix-femina (L.) Roth Woodsiaceae
    Baccharis bogotensis Kunth Asteraceae
    Baccharis latifolia (Ruiz & Pav.) Pers. Asteraceae
    Baccharis lehmannii Klatt Asteraceae
    Baccharis macrantha Kunth Asteraceae
    Barnadesia spinosa L.f. Asteraceae
    Bejaria resinosa Mutis ex L. f. Ericaceae
    Berberis glauca Kunth Berberidaceae
    Berberis goudotii Triana & Planch. Berberidaceae
    Bidens rubifolia Kunth Asteraceae
    Blechnum cordatum (Desv.) Hieron. Blechnaceae
    Blechnum loxense (Kunth) Hook. ex Salomon Blechnaceae
    Blechnum occidentale L. Blechnaceae
    Blechnum schomburgkii (Klotzsch) C. Chr. Blechnaceae
    Boehmeria cylindrica (L.) Sw. Urticaceae
    Boehmeria sp Urticaceae
    Bomarea multiflora (L. f.) Mirb. Alstroemeriaceae
    Bomarea sp Alstroemeriaceae
    Botrychium virginianum (L.) Sw. Ophioglossaceae
    Bucquetia glutinosa (L. f.) DC. Melastomataceae
    Calamagrostis effusa (Kunth) Steud. Poaceae
    Calceolaria microbefaria Kraenzl. Calceolariaceae
    Campyloneurum angustifolium (Sw.) Fée Polypodiaceae
    Campyloneurum latum T. Moore Polypodiaceae
    Capsella bursa-pastoris (L.) Medik. Brassicaceae
    Cardamine ovata Benth. Brassicaceae
    Carex pichinchensis Kunth Cyperaceae
    Carex sp Cyperaceae
    Castilleja fissifolia L.f. Orobanchaceae
    Cavendishia bracteata (Ruiz & Pav. ex J.St.Hil.) Hoerold Ericaceae
    Cedrela montana Moritz ex Turcz. Meliaceae
    Cestrum buxifolium Kunth Solanaceae
    Chaetolepis lindeniana (Naudin) Triana Melastomataceae
    Chromolaena bullata (Klatt) R.M.King & H.Rob. Asteraceae
    Chromolaena leivensis (Hieron.) R.M.King & H.Rob. Asteraceae
    Chromolaena perglabra (B.L.Rob.) R.M.King & H.Rob. Asteraceae
    Chromolaena scabra (L.f.) R.M.King & H.Rob. Asteraceae
    Chromolaena sp1 Asteraceae
    Chromolaena sp2 Asteraceae
    Chusquea scandens Kunth Poaceae
    Citharexylum sulcatum Moldenke Verbenaceae
    Clematis dioica L. Ranunculaceae
    Clematis haenkeana C.Presl Ranunculaceae
    Clethra fimbriata Kunth Clethraceae
    Clusia multiflora Kunth Clusiaceae
    Erigeron canadensis L. Asteraceae
    Cortaderia nitida (Kunth) Pilg. Poaceae
    Cranichis ciliata Kunth Orchidaceae
    Cranichis sp Orchidaceae
    Critoniopsis bogotana (Cuatrec.) H.Rob. Asteraceae
    Croton bogotanus Cuatrec. Euphorbiaceae
    Cuphea hyssopifolia Kunth Lythraceae
    Cyperus sp Cyperaceae
    Cystopteris fragilis (L.) Bernh. Cystopteridaceae
    Daphnopsis caracasana Meisn. Thymelaeaceae
    Digitalis purpurea L. Plantaginaceae
    Lycopodium thyoides Humb. & Bonpl. ex Willd. Lycopodiaceae
    Diplostephium floribundum (Benth.) Wedd. Asteraceae
    Diplostephium ochraceum (Kunth) Nees Asteraceae
    Diplostephium rosmarinifolium (Benth.) Wedd. Asteraceae
    Diplostephium rosmarinifolium (Benth.) Wedd. Asteraceae
    Drimys granadensis L.f. Winteraceae
    Dryopteris sp Dryopteridaceae
    Duranta mutisii L.f. Verbenaceae
    Elaphoglossum cuspidatum (Willd.) T. Moore Dryopteridaceae
    Elaphoglossum engelii (H. Karst.) Christ Dryopteridaceae
    Elaphoglossum gayanum (Fée) T. Moore Dryopteridaceae
    Elaphoglossum latifolium (Sw.) J. Sm. Dryopteridaceae
    Elaphoglossum lindenii (Bory ex Fée) T. Moore Dryopteridaceae
    Elaphoglossum lingua (C. Presl) Brack. Dryopteridaceae
    Elaphoglossum minutum (Pohl ex Fée) T. Moore Dryopteridaceae
    Elaphoglossum sp Dryopteridaceae
    Elleanthus aurantiacus (Lindl.) Rchb.f. Orchidaceae
    Elleanthus maculatus (Lindl.) Rchb.f. Orchidaceae
    Elleanthus purpureus (Rchb.f.) Rchb.f. Orchidaceae
    Elleanthus sp Orchidaceae
    Epidendrum caesaris Hágsater & E.Santiago Orchidaceae
    Epidendrum cylindraceum Lindl. Orchidaceae
    Epidendrum excisum Lindl. Orchidaceae
    Epidendrum moritzii Rchb.f. Orchidaceae
    Epidendrum scutella Lindl. Orchidaceae
    Epidendrum sisgaense Hágsater Orchidaceae
    Epidendrum sp1 Orchidaceae
    Epidendrum sp2 Orchidaceae
    Epidendrum sp3 Orchidaceae
    Epidendrum sp4 Orchidaceae
    Equisetum bogotense Kunth Equisetaceae
    Eriosorus flexuosus (Kunth) Copel. Pteridaceae
    Escallonia myrtilloides L.f. Escalloniaceae
    Espeletiopsis corymbosa (Humb. & Bonpl.) Cuatrec. Asteraceae
    Faramea sp Rubiaceae
    Fernandezia crystallina (Lindl.) M.W.Chase Orchidaceae
    Fernandezia sanguinea (Lindl.) Garay & Dunst. Orchidaceae
    Fragaria vesca L. Rosaceae
    Frangula goudotiana (Triana & Planch.) Grubov Rhamnaceae
    Frangula sp Rhamnaceae
    Frangula sphaerosperma (Sw.) Kartesz & Gandhi Rhamnaceae
    Fuchsia boliviana Carrière Onagraceae
    Fuchsia magellanica Lam. Onagraceae
    Fuchsia paniculata Lindl. Onagraceae
    Gaiadendron punctatum (Ruiz & Pav.) G.Don Loranthaceae
    Galianthe bogotensis (Kunth) E.L.Cabral & Bacigalupo Rubiaceae
    Galium ascendens Willd. ex Spreng. Rubiaceae
    Galium hypocarpium (L.) Endl. ex Griseb. Rubiaceae
    Gnaphalium americanum Mill. Asteraceae
    Gaultheria anastomosans (Mutis ex L.f.) Kunth Ericaceae
    Gaultheria erecta Vent. Ericaceae
    Geissanthus andinus Mez Primulaceae
    Geranium holosericeum Willd. ex Spreng. Geraniaceae
    Greigia stenolepis L.B.Sm. Bromeliaceae
    Habenaria sp Orchidaceae
    Hedyosmum racemosum (Ruiz & Pav.) G.Don Chloranthaceae
    Heppiella ulmifolia (Kunth) Hanst. Gesneriaceae
    Hesperomeles goudotiana (Decne.) Killip Rosaceae
    Hesperomeles obtusifolia (Pers.) Lindl. Rosaceae
    Hieracium avilae Kunth Asteraceae
    Huperzia hippuridea (Christ) Holub Lycopodiaceae
    Hydrocotyle bonplandii A.Rich. Araliaceae
    Hydrocotyle gunnerifolia Wedd. Araliaceae
    Hydrocotyle tenerrima Rose ex Mathias Araliaceae
    Hymenophyllum myriocarpum Hook. Hymenophyllaceae
    Hypericum juniperinum Kunth Hypericaceae
    Hypochaeris radicata L. Asteraceae
    Ilex kunthiana Triana Aquifoliaceae
    Ilex sp Aquifoliaceae
    Jungia ferruginea L.f. Asteraceae
    Lantana camara L. Verbenaceae
    Lantana rugosa Thunb. Verbenaceae
    Lepanthes gargantua Rchb.f. Orchidaceae
    Lepidaploa canescens (Kunth) Cass. Asteraceae
    Luzula gigantea Desv. Juncaceae
    Lycopodium clavatum L. Lycopodiaceae
    Lycopodium jussiaei Desv. ex Poir. Lycopodiaceae
    Macleania rupestris (Kunth) A.C.Sm. Ericaceae
    Macrocarpaea glabra (L. f.) Gilg Gentianaceae
    Malaxis crispifolia (Rchb.f.) Kuntze Orchidaceae
    Malaxis sp Orchidaceae
    Matelea mutisiana Morillo Apocynaceae
    Maxillariella graminifolia (Kunth) M.A.Blanco & Carnevali Orchidaceae
    Maxillaria sp Orchidaceae
    Ctenopteris flabelliformis (Poir.) J. Sm. Polypodiaceae
    Melpomene moniliformis (Lag. ex Sw.) A.R. Sm. & R.C. Moran Polypodiaceae
    Miconia elaeoides Naudin Melastomataceae
    Miconia latifolia (D. Don) Naudin Melastomataceae
    Miconia ligustrina (Sm.) Triana Melastomataceae
    Miconia micropetala Cogn. Melastomataceae
    Miconia squamulosa Triana Melastomataceae
    Miconia theizans (Bonpl.) Cogn. Melastomataceae
    Monnina aestuans (L.f.) DC. Polygalaceae
    Monnina fastigiata (Bonpl.) DC. Polygalaceae
    Monochaetum bonplandii (Humb. & Bonpl.) Naudin Melastomataceae
    Monochaetum myrtoideum Naudin Melastomataceae
    Morella parvifolia (Benth.) Parra-Os. Myricaceae
    Munnozia senecionidis Benth. Asteraceae
    Myrcianthes leucoxyla (Ortega) McVaugh Myrtaceae
    Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. Primulaceae
    Myrsine dependens (Ruiz & Pav.) Spreng. Primulaceae
    Myrsine guianensis (Aubl.) Kuntze Primulaceae
    Myrsine sp Primulaceae
    Nertera granadensis (Mutis ex L.f.) Druce Rubiaceae
    Niphogeton Apiaceae
    Ocotea heterochroma Mez & Sodiro Lauraceae
    Ocotea longifolia Kunth Lauraceae
    Oligactis sessiliflora (Kunth) H.Rob. & Brettell Asteraceae
    Oreopanax bogotensis Cuatrec. Araliaceae
    Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. Araliaceae
    Oreopanax mutisianus (Kunth) Decne. & Planch. Araliaceae
    Orthrosanthus chimboracensis (Kunth) Baker Iridaceae
    Oxalis acetosella L. Oxalidaceae
    Oxalis corniculata L. Oxalidaceae
    Oxalis medicaginea Kunth Oxalidaceae
    Oxalis spiralis Ruiz & Pav. ex G.Don Oxalidaceae
    Oxalis tuberosa Molina Oxalidaceae
    Palicourea angustifolia Kunth Rubiaceae
    Palicourea lineariflora Wernham Rubiaceae
    Panicum sp Poaceae
    Paspalum bonplandianum Flüggé Poaceae
    Passiflora adulterina L. f. Passifloraceae
    Passiflora bogotensis Benth. Passifloraceae
    Passiflora capsularis L. Passifloraceae
    Passiflora sp Passifloraceae
    Passiflora tripartita (Juss.) Poir. Passifloraceae
    Pecluma divaricata (E. Fourn.) Mickel & Beitel Polypodiaceae
    Pecluma paradiseae (Langsd. & Fisch.) M.G. Price Polypodiaceae
    Pecluma sp Polypodiaceae
    Pentacalia nitida (Kunth) Cuatrec. Asteraceae
    Monticalia pulchella (Kunth) C.Jeffrey Asteraceae
    Peperomia alibacophylla Trel. & Yunck. Piperaceae
    Peperomia dendrophila Schltdl. Piperaceae
    Peperomia arthurii Trel. & Yunck. Piperaceae
    Peperomia emarginulata C.DC. Piperaceae
    Peperomia galioides Kunth Piperaceae
    Peperomia glabella (Sw.) A.Dietr. Piperaceae
    Peperomia hartwegiana Miq. Piperaceae
    Peperomia microphylla Kunth Piperaceae
    Peperomia rotundata Kunth Piperaceae
    Peperomia suratana Trel. & Yunck. Piperaceae
    Pernettya sp Ericaceae
    Gaultheria myrsinoides Kunth Ericaceae
    Persea ruizii J.F.Macbr. Lauraceae
    Phenax rugosus (Poir.) Wedd. Urticaceae
    Phyllanthus salviifolius Kunth Phyllanthaceae
    Physalis peruviana L. Solanaceae
    Pilea alsinifolia Wedd. Urticaceae
    Pilea goudotiana Wedd. Urticaceae
    Pilea lindeniana Wedd. Urticaceae
    Pilea sp Urticaceae
    Piper artanthe C.DC. Piperaceae
    Piper bogotense C.DC. Piperaceae
    Piper marginatum Jacq. Piperaceae
    Plagiogyria pectinata (Liebm.) Lellinger Plagiogyriaceae
    Pleopeltis macrocarpa (Bory ex Willd.) Kaulf. Polypodiaceae
    Pleopeltis sp 1 Polypodiaceae
    Pleopeltis sp 2 Polypodiaceae
    Pleopeltis sp 3 Polypodiaceae
    Pleurothallis lindenii Lindl. Orchidaceae
    Pleurothallis linguifera Lindl. Orchidaceae
    Podocarpus oleifolius D.Don Podocarpaceae
    Polystichum lehmannii Hieron. Dryopteridaceae
    Ponthieva similis C.Schweinf. Orchidaceae
    Prunus sp Rosaceae
    Psychotria boqueronensis Wernham Rubiaceae
    Pteridium aquilinum (L.) Kuhn Dennstaedtiaceae
    Pteris muricata Hook. Pteridaceae
    Rhynchospora macrochaeta Steud. ex Boeckeler Cyperaceae
    Rhynchospora nervosa (Vahl) Boeckeler Cyperaceae
    Rhynchospora sp Cyperaceae
    Rubus floribundus Kunth Rosaceae
    Rubus wardii Merr. Rosaceae
    Rubus sp Rosaceae
    Rubus ulmifolius Schott Rosaceae
    Salvia sp Lamiaceae
    Sauvagesia erecta L. Ochnaceae
    Serpocaulon eleutherophlebium (Fée) A.R. Sm. Polypodiaceae
    Serpocaulon lasiopus (Klotzsch) A.R. Sm. Polypodiaceae
    Serpocaulon levigatum (Cav.) A.R. Sm. Polypodiaceae
    Serpocaulon sp Polypodiaceae
    Serpocaulon sessilifolium (Desv.) A.R. Sm. Polypodiaceae
    Setaria italica (L.) P.Beauv. Poaceae
    Siphocampylus brevicalyx E.Wimm. Campanulaceae
    Smallanthus pyramidalis (Triana) H.Rob. Asteraceae
    Smilax cuspidata Duhamel Smilacaceae
    Smilax sp 1 Smilacaceae
    Smilax sp 2 Smilacaceae
    Smilax tomentosa Kunth Smilacaceae
    Solanum caripense Dunal Solanaceae
    Solanum cornifolium Dunal Solanaceae
    Solanum pseudocapsicum L. Solanaceae
    Solanum sp 1 Solanaceae
    Solanum sp 2 Solanaceae
    Sphyrospermum buxifolium Poepp. & Endl. Ericaceae
    Stachys arvensis (L.) L. Lamiaceae
    Stelis argentata Lindl. Orchidaceae
    Stelis galeata (Lindl.) Pridgeon & M.W.Chase Orchidaceae
    Stelis pulchella Kunth Orchidaceae
    Stelis pusilla Kunth Orchidaceae
    Stelis sp 1 Orchidaceae
    Stelis sp 2 Orchidaceae
    Stelis sp 3 Orchidaceae
    Stelis sp 4 Orchidaceae
    Stelis sp 5 Orchidaceae
    Stelis sp 6 Orchidaceae
    Stelis sp 7 Orchidaceae
    Stelis sp 8 Orchidaceae
    Stelis sp 9 Orchidaceae
    Stenorrhynchos speciosum (Jacq.) Rich. Orchidaceae
    Styrax sp Styracaceae
    Symplocos lucida (Thunb.) Siebold & Zucc. Symplocaceae
    Thelypteris rudis (Kunze) Proctor Thelypteridaceae
    Tibouchina grossa (L. f.) Cogn. Melastomataceae
    Tigridia pavonia (L.f.) DC. Iridaceae
    Tillandsia biflora Ruiz & Pav. Bromeliaceae
    Tillandsia complanata Benth. Bromeliaceae
    Tillandsia elongata Kunth Bromeliaceae
    Tillandsia sp 1 Bromeliaceae
    Tillandsia sp 2 Bromeliaceae
    Tillandsia sp 3 Bromeliaceae
    Tillandsia sp 4 Bromeliaceae
    Tillandsia sp 5 Bromeliaceae
    Tillandsia sp 6 Bromeliaceae
    Tillandsia sp 7 Bromeliaceae
    Tillandsia sp 8 Bromeliaceae
    Tradescantia sp 1 Commelinaceae
    Tradescantia sp 2 Commelinaceae
    Ulex europaeus L. Fabaceae
    Uncinia hamata (Sw.) Urb. Cyperaceae
    Vaccinium floribundum Kunth Ericaceae
    Valeriana clematitis Kunth Caprifoliaceae
    Vallea stipularis L.f. Elaeocarpaceae
    Cordia cylindrostachya (Ruiz & Pav.) Roem. & Schult. Boraginaceae
    Villanova oppositifolia Lag. Asteraceae
    Viburnum tinoides L.f. Adoxaceae
    Viburnum triphyllum Benth. Adoxaceae
    Weinmannia fagaroides Kunth Cunoniaceae
    Weinmannia tomentosa L.f. Cunoniaceae
    Xylosma spiculifera (Tul.) Triana & Planch. Salicaceae
    • a Exotic or mainly cultivated.

    LIST OF PLOT-RESOLVED COLLECTED VOUCHERS

    Collection number (MSC) Locality Plot Species
    1 Torca, La Francia M1 Ocotea heterocroma
    2 Torca, La Francia M1 Daphnopsis caracasana
    3 Torca, La Francia M1 Oligactis volubilis
    4 Torca, La Francia M1 Oligactis volubilis
    5 Torca, La Francia M1 Viburnum tinoides
    6 Torca, La Francia M1 Daphnopsis caracasana
    7 Torca, La Francia M1 Palicourea (angustifolia)
    8 Torca, La Francia M1 Oreopanax incisus
    9 Torca, La Francia M1 Daphnopsis caracasana
    10 Torca, La Francia M1 Bejaria aestuans
    11 Torca, La Francia M1 Piper arthanthe
    12 Torca, La Francia M1 Daphnopsis caracasana
    13 Torca, La Francia M1 Miconia squamulosa
    14 Torca, La Francia M1 Viburnum tryphyllum
    15 Torca, La Francia M1 Macleania rupestris
    16 Torca, La Francia M1 Daphnopsis caracasana
    17 Torca, La Francia M1 Myrcianthes leucoxyla
    18 Torca, La Francia M1 Vallea stipularis
    19 Torca, La Francia M1 Bejaria resinosa
    20 Torca, La Francia M1 Myrsine coriacea
    21 Torca, La Francia M1 Cytarexylum sulcatum
    22 Torca, La Francia M1 Macleania rupestris
    23 Torca, La Francia M1 Smilax tomentosa
    24 Torca, La Francia M1 Bejaria aestuans
    25 Torca, La Francia M1 Ilex kunthiana
    26 Torca, La Francia M1 Bidens pilosa
    27 Torca, La Francia M1 Bejaria resinosa
    28 Torca, La Francia M1 Oreopanax incisus
    29 Torca, La Francia M1 Daphnopsis caracasana
    30 Torca, La Francia M1 Daphnopsis caracasana
    31 Torca, La Francia M1 Myrcianthes leucoxyla
    32 Torca, La Francia M1 Daphnopsis caracasana
    33 Torca, La Francia M1 Daphnopsis caracasana
    34 Torca, La Francia M1 Xylosma spiculifera
    35 Torca, La Francia M1 Psycothrya boqueronensis
    36 Torca, La Francia M1 Miconia squamulosa
    37 Torca, La Francia M1 Psycothrya boqueronensis
    38 Torca, La Francia M1 Xylosma spiculifera
    39 Torca, La Francia M1 Myrsine coriacea
    40 Torca, La Francia M1 Daphnopsis caracasana
    41 Torca, La Francia M1 Daphnopsis caracasana
    42 Torca, La Francia M2 Alnus accuminata
    43 Torca, La Francia M2 Cavendishia bracteata
    44 Torca, La Francia M2 Vallea stipularis
    45 Torca, La Francia M2 Cavendishia bracteata
    46 Torca, La Francia M2 Cavendishia nitida
    47 Torca, La Francia M2 Vallea stipularis
    48 Torca, La Francia M2 Hesperomeles goudotiana
    49 Torca, La Francia M2 Diplostephium rosmarinifolius
    50 Torca, La Francia M2 Viburnum tryphyllum
    51 Torca, La Francia M2 Miconia squamulosa
    52 Torca, La Francia M2 Viburnum tinoides
    53 Torca, La Francia M2 Viburnum tinoides
    54 Torca, La Francia M2 Bejaria aestuans
    55 Torca, La Francia M2 Clusia multiflora
    56 Torca, La Francia M2 Viburnum tryphyllum
    57 Torca, La Francia M2 Daphnopsis caracasana
    58 Torca, La Francia M2 Daphnopsis caracasana
    59 Torca, La Francia M2 Daphnopsis caracasana
    60 Torca, La Francia M2 Xylosma spiculifera
    61 Torca, La Francia M2 Daphnopsis caracasana
    62 Torca, La Francia M2 Cavendishia bracteata
    63 Torca, La Francia M2 Myrcianthes leucoxyla
    64 Torca, La Francia M2 Gaiadendron punctatum
    65 Torca, La Francia M2 Oreopanax incisus
    66 Torca, La Francia M2 Oreopanax incisus
    67 Torca, La Francia M1 Xylosma spiculifera
    68 Torca, La Francia M2 Bejaria resinosa
    69 Torca, La Francia M2 Miconia squamulosa
    70 Torca, La Francia M2 Hesperomeles goudotiana
    71 Torca, La Francia M2 Myrsine pellucida
    72 Torca, La Francia M2 Viburnum tinoides
    73 Torca, La Francia M2 Myrsine guianensis
    74 Torca, La Francia M2 Aiouea dubia
    75 Torca, La Francia Alnus accuminata
    76 Torca, La Francia M3 Cavendishia bracteata
    77 Torca, La Francia M3 Gaiadendron punctatum
    78 Torca, Colegio M4 Gaiadendron punctatum
    79 Torca, Colegio M4 Peperomia rotundata
    80 Torca, Colegio M4 Frangula sphaerosperma
    81 Torca, Colegio M4 Cavendishia nitida
    82 Torca, Colegio M4 Palicourea angustifolia
    86 San Juan de Sumapaz, don Hernan M8 Hesperomeles ferruginea
    87 Torca colegio M5 Aiouea dubia
    88 Torca colegio M5 Phyllantus salvifolius
    89 Pasquilla los Encenillales M2-M6 Gaiadendron punctatum
    90 Pasquilla los Encenillales M2-M6 Bejaria resinosa
    91 Pasquilla los Encenillales M2-M6 Myrsine dependens
    92 Pasquilla los Encenillales M2-M6 Myconia ligustrina
    93 Pasquilla los Encenillales M2-M6 Diplostephium rosmarinifolius
    94 Pasquilla los Encenillales M2-M6 Vallea stipularis
    95 Pasquilla los Encenillales M2-M6 Cavendishia bracteata
    96 Pasquilla los Encenillales M2-M6 Hesperomeles goudotiana
    97 Pasquilla los Encenillales M2-M6 Bucquetia glutinosa
    98 Pasquilla los Encenillales M2-M6 Viburnum tryphyllum
    99 Pasquilla los Encenillales M2-M6 Ageratina glyptophlebia
    100 Torca la francia M1 Peperomia glabella
    101 Torca la francia M1 Pleopeltis macrocarpa
    102 Torca la francia M1 Pleopeltis murora
    103 Torca la francia M1 Pleurothallis linguifera
    104 Pasquilla los Encenillales M2 Ponthieva similis
    105 Torca colegio M4 Chromolaena perglabra
    106 Torca colegio M4 Peperomia suratana
    107 Torca colegio M4 Epidendrum sp.
    108 Torca colegio M4 Serpocaulon eleutherophlebium
    109 Pasquilla los Encenillales M2-M6 Hymenophyllum myriocarpum
    110 Pasquilla los Encenillales M2-M6 Melpomene flabelliformis
    111 Pasquilla los Encenillales M2-M6 Pecluma paradisiaca
    112 Pasquilla los Encenillales M2-M6 Elaphpglossum gayanum
    113 Pasquilla los Encenillales M2-M6 Hydrocotile tenerrima
    114 Pasquilla los Encenillales M2-M6 Lycopodium clavatum
    115 Pasquilla los Encenillales M2-M6 Bidens triplinervia
    116 Pasquilla los Encenillales M2-M6 Passiflora adulterina
    117 Pasquilla los Encenillales M2-M6 Malaxis crispifolia
    118 Torca colegio M5 Pilea parietaria
    119 Torca colegio M5 Thelypteris sp.
    120 Torca colegio M5 Pilea sp.
    121 Torca colegio M5 Gaultheria sp.
    122 Sumapaz san Juan M7-M7bis Ageratina glyptophlebia
    123 Sumapaz san Juan M7-M7bis Miconia eleanoides
    124 Sumapaz san Juan M7-M7bis Hesperomeles goudotiana
    125 Sumapaz san Juan M7-M7bis Hesperomeles ferruginea
    126 Sumapaz san Juan M7-M7bis Ilex sp.
    127 Sumapaz san Juan M7-M7bis Persea ferruginea
    128 Sumapaz san Juan M7-M7bis Vaccinium floribundum
    129 Sumapaz san Juan M7-M7bis Ageratina glyptophlebia
    130 Sumapaz san Juan M7-M7bis Ilex kunthiana
    131 Torca- conjunto floresta R11-R12-R14 Serpocaulon sessilifolium
    132 Torca- conjunto floresta R11-R12-R14 Epidendrum excisum
    133 Torca- conjunto floresta R11-R12-R14 Elleanthus purpureus
    134 Torca- conjunto floresta R11-R12-R14 Stelis cassidis
    135 Torca- conjunto floresta R11-R12-R14 Epidendrum brachyorodochilum
    136 Torca- conjunto floresta R11-R12-R14 Pleurothallis sp.
    137 Torca- conjunto floresta R11-R12-R14 Stelis sp.
    138 Torca- conjunto floresta R11-R12-R14 Frangula sphaerosperma
    139 Torca- conjunto floresta R11-R12-R14 Ocotea longifolia
    140 Tabio R8-R7 Cardamine ovata
    141 Tabio R8-R7 Valeriana clematis
    142 Tabio R8-R7 Rhyncospora nervosa
    143 Tabio R8-R7 Zeugites sp.
    144 Tabio R8-R7 Asplenium praemorsum
    145 Tabio R8-R7 Oxalis acetosella
    146 Tabio R8-R7 Tradescantia sp.
    147 Tabio R8-R7 Lantana sp.
    148 Tabio R8-R7 Palicourea linearifolia
    149 Tabio R8-R7 Piper bogotense
    150 Tabio R8-R7 Daphnopsis caracasana
    151 Tabio R8-R7 Peperomia angularis
    152 Tabio R8-R7 Cuphea hyssopifolia
    153 Tabio R8-R7 Peperomia galioides
    154 Tabio R8-R7 Asteraceae sp.
    155 Tabio R8-R7 Galianthe bogotensis
    156 Tabio R8-R7 Anthoxanthum odoratum
    157 Tabio R8-R7 Setaria italica
    158 Tabio R8-R7 Serpocaulon laevigatum
    159 Tabio R8-R7 Uncinia hamata
    160 Sumapaz san Juan M8-M8bis Ageratina tinifolia
    161 Sumapaz san Juan M8-M8bis Baccharis macrantha
    162 Sumapaz san Juan M8-M8bis Rhyncospora macrochaeta
    163 Sumapaz san Juan M8-M8bis Miconia resima
    164 Sumapaz san Juan M8-M8bis Carex pichinchensis
    165 Sumapaz san Juan M8-M8bis Rubus acantophilus
    166 Sumapaz san Juan M8-M8bis Bucquetia glutinosa
    167 Sumapaz san Juan M8-M8bis Escallonia myrtillioides
    168 Sumapaz san Juan M8-M8bis Hymenophyllum myriocarpum
    169 Sumapaz san Juan M8-M8bis Podocarpus oleifolia
    170 Sumapaz san Juan M8-M8bis Ilex sp.
    171 Sumapaz san Juan M8-M8bis Miconia eleanoides
    172 Sumapaz san Juan M8-M8bis Calceolaria microbefaria
    173 Torca- conjunto floresta R13 Conyza canadensis
    174 Torca- conjunto floresta R13 Arrenatherum elatius
    175 Torca- conjunto floresta R13 Peperomia accuminata
    176 Torca- conjunto floresta R13 Fuchsia boliviana
    177 Torca- conjunto floresta R13 Serpocaulon laevigatum
    178 Torca- conjunto floresta R13 Criotonopsis bogotana
    179 Torca- conjunto floresta R13 Miconia resima
    180 Torca- conjunto floresta R13 Fragaria vesca
    182 Torca- conjunto floresta R13 Gamochaete americana
    183 Tabio R9-R10 Pleopeltis macrocarpa
    184 Tabio R9-R10 Pleopeltis murora
    185 Tabio R9-R10 Peperomia cf spatulata
    186 Tabio R9-R10 Botrichium virginianum
    187 Tabio R9-R10 Peperomia sp.
    188 Tabio R9-R10 Asplenium sp.
    189 Tabio R9-R10 Oxalis cf macrocarpa
    190 Tabio R9-R10 Stelis sp.
    191 Tabio R9-R10 Miconia squamulosa
    192 Tabio R9-R10 Cestrum buxifolium
    193 Tabio R9-R10 Alonsoa meridionalis
    194 Tabio R9-R10 Pilea lindeniana
    195 Tabio R9-R10 Epidendrum scutella
    196 Tabio R9-R10 Phyllantus salvifolius
    197 Tabio R9-R10 Galium sp.
    198 Tabio R9-R10 Palicourea linearifolia
    199 Tabio R9-R10 Uncinia hamata
    200 Tabio R9-R10 Xylosma spiculifera
    201 Tabio R9-R10 Clematis
    202 Tabio R9-R10 Peperomia suratana
    203 Tabio R9-R10 Rhyncospora macrochaeta
    204 Tabio R9-R10 Cardamine ovata
    205 Tabio R9-R10 Ponthieva similis
    206 Tabio R9-R10 Ageratina sp.
    207 Encenillo R3-R5 Stelis sp.
    208 Encenillo R3-R5 Lepanthes gargantua
    209 Encenillo R3-R5 Nertera granadensis
    210 Encenillo R3-R5 Pleurothallis lindenii
    211 Encenillo R3-R5 Huperzia sp.
    212 Encenillo R3-R5 Stelis sp.
    213 Encenillo R3-R5 Sphyrospermum buxifolium
    214 Encenillo R3-R5 Peperomia arthurii
    215 Pasquilla Finca Alveiro M9bis-M10 Smallanthus pyramidalis
    216 Pasquilla Finca Alveiro M9bis-M10 Elleanthus aurantiacus
    217 Pasquilla Finca Alveiro M9bis-M10 Rhyncospora sp.
    218 Pasquilla Finca Alveiro M9bis-M10 Peperomia microphylla
    219 Pasquilla Finca Alveiro M9bis-M10 Gaultheria anastomosans
    220 Pasquilla Finca Alveiro M9bis-M10 Epidendrum caesaris
    221 Pasquilla Finca Alveiro M9bis-M10 Elaphoglossum lindenii
    222 Pasquilla Finca Alveiro M9bis-M10 Apiaceae sp.
    223 Pasquilla Finca Alveiro M9bis-M10 Serpocaulon lasiopus
    224 Pasquilla Finca Alveiro M9bis-M10 Melastomataceae
    225 Pasquilla Finca Alveiro M9bis-M10 Digitalis purpurea
    226 Pasquilla Finca Alveiro M9bis-M10 Oxalis cf spiralis
    227 Pasquilla Finca Alveiro M9bis-M10 Berberis rigidifolia
    228 Pasquilla Finca Alveiro M9bis-M10 Bidens sp.
    229 Pasquilla Finca Alveiro M9bis-M10 Elaphoglossum gayanum
    230 Pasquilla Finca Alveiro M9bis-M10 Baccharis bogotensis
    231 Pasquilla Finca Alveiro M9bis-M10 Ageratina asclepiadea
    232 Pasquilla Finca Alveiro M9bis-M10 Weinmannia tomentosa
    233 Pasquilla Finca Alveiro M9bis-M10 Hypochaeris radicata
    234 Pasquilla Finca Alveiro M9bis-M10 Peperomia sp.
    235 Pasquilla Finca Alveiro M9bis-M10 Cytarexylum sulcatum
    236 Pasquilla Finca Alveiro M9bis-M10 Morella parvifolia
    237 Pasquilla Finca Alveiro M9bis-M10 Vallea stipularis
    238 Pasquilla Finca Alveiro M9bis-M10 Bidens sp.
    239 Pasquilla Finca Alveiro M9bis-M10 Galium sp.
    240 Pasquilla Finca Alveiro M9bis-M10 Hypericum juniperinum
    241 Pasquilla Finca Alveiro M9bis-M10 Vaccinium floribundum
    242 Torca-Portal de Fusca R17-R18 Campyloneuron latum
    243 Torca-Portal de Fusca R17-R18 Athyrium flix-femina
    244 Torca-Portal de Fusca R17-R18 Clethra fimbriata
    245 Torca-Portal de Fusca R17-R18 Hieracium avilae
    246 Torca-Portal de Fusca R17-R18 Cranichis ciliata
    247 Torca-Portal de Fusca R17-R18 Nyphogeton sp.
    248 Torca-Portal de Fusca R17-R18 Jungia ferruginea
    249 Torca-Portal de Fusca R17-R18 Frangula goudotiana
    250 Torca-Portal de Fusca R17-R18 Pilea sp foglie serrate
    251 Torca-Portal de Fusca R17-R18 Syphocampilus columnae
    252 Torca-Portal de Fusca R17-R18 Pilea lindeniana
    253 Torca-Portal de Fusca R17-R18 Uncinia hamata
    254 Torca-Portal de Fusca R17-R18 Asplenium monantes
    255 Torca-Portal de Fusca R17-R18 Peperomia suratana
    256 Torca-Portal de Fusca R17-R18 Carex sp.
    257 Torca-Portal de Fusca R17-R18 Eriosorus flexuosus
    258 Torca-Portal de Fusca R17-R18 Asplenium cladolepton
    265 Encenillo R15-R16 Fernandezia sanguinea
    266 Encenillo R15-R16 Macrocarpaea glabra
    267 Encenillo R15-R16 Frangula goudotiana
    268 Encenillo R15-R16 Stelis sp.
    269 Encenillo R15-R16 Diphasiastrum thyoides
    270 Encenillo R15-R16 Ponthieva villosa
    271 Encenillo R15-R16 Stelis sp.
    272 Encenillo R15-R16 Stelis sp.
    273 Tabio R20 Maxillaria graminifolia
    274 Tabio R19 Phenax rugosus
    275 Tabio R19 Pleurothallis sp.
    277 Tabio R19 Pecluma divaricata
    278 Tabio R19 Pleopeltis murora
    279 Tabio R19 Cystopteris fragilis
    280 Tabio R19 Adiantum andicola
    281 Tabio R19 Asplenium radicans

    APPENDIX A4

    List of retrievable aerial pictures

    Quadrant Year Folder number Flight number Picture number Corresponding plot
    K-11 1962 s-222336A c-1063 1800 Torca
    K-11 1940 s-501 a-136 157;156 Torca
    K-11 1940 s-777 c-16 387;385;383;381 Torca
    K-11 1962 22214B c-1058 1165;1164 Torca
    K-11 1978 s-4542 r-750 153;152;151 Torca
    K-11 1986 digitalized c-2265 9 Torca
    K-11 1993 digitalized c-2523 217 Torca
    K-11 2000 digitalized r-1212 129 Torca
    K-11 2004 digitalized c-2717 259 Torca
    K-10 1940 s-913 c-71 704;703 Tabio
    K-10 1957 s-239 m-127 1863 Tabio
    K-10 1961 s-22340 c-1082 2478 Tabio
    K-10 1993 s-36949 c-2521 82 Tabio
    K-10 1998 s-37851 c-2636 225 Tabio
    K-10 2007 s-40778 c-2800 83 Tabio
    L-10 1948 s-2159 c-502 281 Sumapaz
    L-10 1951 s-2715 c-606 290 Sumapaz
    L-10 1961 s-2282 R-487 46 Sumapaz
    L-10 1963 s-1136 M-1266 26084 Sumapaz
    L-10 1987 s-34455 c-2323 220 Sumapaz
    L-10 1996 s-37521B c-2584 120 Sumapaz
    L-10 1941 s-668 a-232 72;70 Pasquilla
    L-10 1961 s-895 m-1142 18941;18940 Pasquilla
    L-10 1977 s-29014 ? 81:86 Pasquilla
    L-10 1981 s-30657 c-1985 94 Pasquilla
    L-10 1993 s-36950 c-2521 129 Pasquilla
    L-10 2007 s-40802 c-2803 170 Pasquilla
    K-11 1940 s-530 a-148 152 Guatavita
    K-11 1958 s-21249 c-859 531 Guatavita
    K-11 1962 s-222236B c-1063 1812 Guatavita
    K-11 1997 digitalized c-2611 12 Guatavita
    K-11 2007 digitalized c-2799 63 Guatavita
    K-11 ? digitalized c-2471 54 Guatavita
    K-11 ? digitalized c-2673 667 Guatavita
    K-11 1940 s-501 a-136 164 Guasca
    K-11 1955 s-148 m-46 4475 Guasca
    K-11 1958 s-21265 c-860 174 Guasca
    K-11 1963 s-22194A c-1055 425 Guasca
    K-11 1978 s-29190 c-1808 13 Guasca
    K-11 1985 digitalized c-2183 39 Guasca
    K-11 1993 digitalized c-2523 144 Guasca
    K-11 2007 digitalized c-2799 56 Guasca
    K-11 2010 digitalized 22803002012010 500 Guasca

    APPENDIX A5

    Indicator species analysis values (IVI) for tree and understory layer

    TREES

    Species Cluster Value (IV) Mean SD p *
    Miconia elaeoides 1 92 22.8 8.87 .0002
    Myrcianthes leucoxyla 1 63.4 26.7 11.24 .0122
    Viburnum triphyllum 1 52 26.2 8.07 .0062
    Vallea stipularis 1 32.8 25.8 7.42 .1664
    Psychotria boqueronensis 1 30 18.7 10.34 .144
    Aiouea dubia 1 20 18.7 9.16 .4105
    Duranta mutisii 1 20 19.1 9.58 .5653
    Frangula sphaerosperma 1 20 18.6 8.89 .2769
    Lippia hirsuta 1 20 18.7 8.82 .4151
    Maytenus laxiflora 1 20 19.2 10 .4747
    Symplocos theiformis 1 18.5 20 10.47 .3391
    Abatia parviflora 1 10 18.7 7.84 1
    Barnadesia spinosa 1 10 18.7 7.84 1
    Carica sp 1 10 18.7 7.84 1
    Melastomataceae NA 1 10 18.7 7.84 1
    Myrsine pellucida 1 10 18.9 8 1
    Ocotea heterocroma 1 10 18.8 7.9 1
    Pentacalia NA 1 10 18.7 8 1
    Phyllanthus salviifolius 1 10 18.8 7.9 1
    Sessea corymbosa 1 10 18.8 7.98 1
    Monticalia pulchella 2 80.1 23.3 11.3 .0002
    Macleania rupestris 2 76.6 27.8 10.25 .0002
    Ilex kunthiana 2 65.9 29.5 9.65 .001
    Myrcianthes ropaloides 2 50 18.6 9.01 .045
    Ageratina asclepiadea 2 45.1 25 13.52 .0792
    Viburnum tinoides 2 34.8 19.5 10.85 .1012
    Diplostephium ochraceum 2 30.8 18 10.22 .1236
    Tibouchina grossa 2 25 18.8 7.93 .4757
    Gaultheria anastomosans 3 100 19.3 10.97 .0004
    Ageratina glyptophlebia 3 90.9 24.9 12.84 .0006
    Bucquetia glutinosa 3 77.2 24.4 12.2 .0028
    Ageratina boyacensis 3 75 20 10.42 .0032
    Berberis glauca 3 75 20 11.34 .0038
    Vaccinium floribundum 3 75 18.2 10.33 .0038
    Myrsine dependens 3 67.5 23.3 11.28 .0056
    Ageratina tinifolia 3 50 19.6 10.34 .0462
    Blechnum schomburgkii 3 50 20.7 10.27 .0468
    Hesperomeles ferruginea 3 50 19.3 9.97 .0462
    Ilex sp1 3 50 18.9 9.17 .0468
    Persea ferruginea 3 50 20.1 10.38 .0468
    Polylepis quadrijuga 3 50 20.8 10.26 .0468
    Weinmannia fagaroides 3 49.5 20.6 10.28 .046
    Hesperomeles goudotiana 3 46 28.2 10.38 .0672
    Miconia ligustrina 3 44.9 22.7 12.58 .076
    Clethra fagifolia 3 25 18.7 7.88 .4699
    Escallonia myrtilloides 3 25 18.8 7.92 .4701
    Hesperomeles obtusifolia 3 25 18.9 7.98 .4753
    Podocarpus oleifolia 3 25 18.8 7.92 .4701
    Cestrum buxifolium 3 20.3 19.2 10.02 .4803
    Myrsine coriacea 4 71.2 23.8 8.76 .0002
    Clusia multiflora 4 67.7 21.9 11.04 .0038
    Drimys granadensis 4 61.2 22.8 11.49 .0076
    Weinmannia tomentosa 4 45.8 25.4 8.02 .0214
    Hediosmum sp 4 42.9 20.3 11.21 .0846
    Bejaria resinosa 4 41.7 23.6 9.28 .0532
    Cavendishia nitida 4 31.5 22.2 11.12 .1824
    Macrocarpaea glabra 4 28.6 19 9.56 .123
    Ocotea calophylla 4 28.6 18.8 8.78 .0838
    Palicourea demissa 4 28.6 18.5 8.84 .085
    Myrsine latifolia 4 27.5 22.7 11.48 .2296
    Frangula goudotiana 4 24.6 20.5 9.86 .2454
    Critoniopsis bogotana 4 16.5 20.2 10.33 .5909
    Clethra lanata 4 14.3 18.7 7.99 .6699
    Cybianthus iteoides 4 14.3 18.8 7.94 .6927
    Aiouea sp1 4 11.4 19.4 10.29 .7518
    Cavendishia bracteata 5 80.5 29 10.32 .0004
    Diplostephium rosmarinifolius 5 78.5 29.7 13.98 .0054
    Gaiadendron punctatum 5 75.2 22.1 10.95 .0018
    Ulex europaeus 5 66.7 19.7 10.14 .0064
    Alnus acuminata 5 54 19.1 10.64 .0148
    Clethra fimbriata 5 43.9 20.9 11.39 .0528
    Oreopanax bogotensis 5 36.4 20.9 11.38 .1054
    Ageratina fastigiata 5 33.3 18.8 7.99 .096
    Baccharis prunifolia 5 33.3 18.8 7.99 .096
    Varronia cylindrostachya 6 73.1 20.9 11.42 .002
    Myrsine guianensis 6 60 32.5 13.06 .0498
    Oreopanax incisus 6 51.8 24.4 9.37 .0186
    Daphnopsis caracasana 6 47 22.2 10.07 .023
    Miconia squamulosa 6 46 28.8 11.19 .085
    Piper bogotense 6 45.2 22.7 12.22 .0546
    Xylosma spiculifera 6 40.1 23 10.16 .0666
    Palicourea lineariflora 6 36.8 23.7 11.49 .1302
    Baccharis macrantha 6 25 18.6 7.91 .4609
    Bocconia frutescens 6 25 18.7 7.88 .4653
    Cestrum sp 6 25 18.7 7.88 .4653
    Solanum cornipholium 6 25 18.7 7.92 .4663
    Valeriana clematitis 6 25 18.6 7.91 .4609
    Verbesina arborea 6 22.8 19.3 10.18 .3721
    Prunus buxifolia 6 22.6 19.2 10.09 .3765
    Citharexylum sulcatum 6 21.1 22 11.9 .3553
    Cedrela montana 6 19.8 19.5 10.43 .3109
    Escallonia paniculata 6 18.9 18.6 8.9 .4337
    Myrica parvifolia 6 18 21.6 11.77 .4799
    Palicourea angustifolia 6 16 21.8 11.46 .6393
    Croton bogotanus 6 13.5 19.1 10.31 .7337
    Myrica pubescens 6 13 19.5 10.8 .7037

    UNDERSTORY

    Species Group Value (IV) Mean SD p *
    Oreopanax incisus 1 78 25.1 11.18 .0002
    Passiflora bogotensis 1 66.2 24.2 11.73 .0118
    Serpocaulon levigatum 1 59.7 24.3 13.14 .0304
    Piper bogotense 1 54.5 20.9 11.46 .0212
    Oligactis sessiliflora 1 54.2 26.8 14.52 .033
    Blechnum occidentale 1 53.8 22 11.93 .0336
    Smilax tomentosa 1 50.5 31.4 14.34 .0798
    Cedrela montana 1 44 24.4 14.07 .1132
    Miconia squamulosa 1 41.7 28.8 12.23 .1228
    Frangula sphaerosperma 1 39.8 28.8 12.86 .1474
    Uncinia hamata 1 39.4 26.2 13.1 .1168
    Peperomia suratana 1 39.2 27.4 11.95 .1384
    Xylosma spiculifera 1 37.3 21.7 11.9 .0738
    Maxillaria graminifolia 1 36.4 22.4 13.36 .1552
    Pleurothallis linguifera 1 36.4 19.3 11.93 .0886
    Anthoxanthum odoratum 1 34.9 25.2 12.98 .1844
    Smilax sp1 1 33.3 26.1 11.97 .2146
    Daphnopsis caracasana 1 29.5 25.6 13.12 .2757
    Barnadesia spinosa 1 28.9 20.9 12.45 .1968
    Palicourea angustifolia 1 28.8 25 11.16 .2621
    Palicourea lineariflora 1 28.4 20 11.31 .1848
    Critoniopsis bogotana 1 27.3 19 12.4 .2354
    Pilea lindeniana 1 27.3 19.6 12.43 .1992
    Valeriana clematitis 1 25.1 31.5 10.51 .6753
    Stelis sp1 1 23.4 22.4 11.79 .3619
    Frangula sp1 1 19.3 22.1 12.16 .4903
    Ageratina gracilis 1 18.2 17.9 11.18 .4121
    Boehmeria cylindrica 1 18.2 17.1 11.63 .3429
    Botrychium virginianum 1 18.2 17.2 11.99 .3413
    Chromolaena perglabra 1 18.2 17.9 10.91 .4119
    Chromolaena scabra 1 18.2 17.4 11.23 .3811
    Chromolaena sp1 1 18.2 16.8 11.37 .3353
    Clematis dioica 1 18.2 17.1 11.63 .3359
    Clematis haenkeana 1 18.2 17 11.49 .3415
    Conyza canadensis 1 18.2 17 11.2 .3287
    Maxillaria sp1 1 18.2 17.8 11.17 .4121
    Pecluma divaricata 1 18.2 17 11.76 .3359
    Peperomia emarginulata 1 18.2 17 11.6 .3333
    Pilea alsinifolia 1 18.2 17.6 10.9 .4031
    Solanum cornifolium 1 18.2 17.8 11.04 .4117
    Stelis pulchella 1 18.2 17.1 11.69 .3465
    Tillandsia complanata 1 18.2 17 11.74 .3465
    Chromolaena bullata 1 14.9 20 12.39 .5255
    Varronia cylindrostachya 1 14.9 19.6 12.31 .5537
    Bomarea sp1 1 14.6 25.3 12.66 .841
    Capsella bursapastoris 1 14.6 19.6 12.22 .5441
    Miconia theizans 1 14.3 19.5 12.12 .5299
    Pleopeltis macrocarpa 1 13.6 20.7 12.09 .6725
    Epidendrum moritzii 1 12.3 17.9 11.19 .5925
    Citharexylum sulcatum 1 9.6 17.9 11.79 .6985
    Adiantum andicola 1 9.1 15.7 9.87 1
    Alansmia sp1 1 9.1 15.7 9.75 1
    Alonsoa meridionalis 1 9.1 15.8 9.95 1
    Anchietea frangulifolia 1 9.1 15.9 10.04 1
    Anthurium caramantae 1 9.1 15.7 9.75 1
    Arrhenatherum elatius 1 9.1 15.6 9.53 1
    Asplenium cladolepton 1 9.1 15.5 9.69 1
    Asplenium praemorsum 1 9.1 15.5 9.48 1
    Asplundianthus densus 1 9.1 15.6 9.71 1
    Baccharis latifolia 1 9.1 15.6 9.53 1
    Boehmeria sp1 1 9.1 15.7 9.75 1
    Campyloneurum latum 1 9.1 15.5 9.69 1
    Carex sp1 1 9.1 15.5 9.69 1
    Castilleja fissifolia 1 9.1 15.5 9.59 1
    Chromolaena leivensis 1 9.1 15.6 9.71 1
    Croton bogotanus 1 9.1 15.8 9.95 1
    Cuphea hyssopifolia 1 9.1 15.5 9.48 1
    Cyperus sp1 1 9.1 15.6 9.53 1
    Cystopteris fragilis 1 9.1 15.7 9.87 1
    Dryopteris sp1 1 9.1 15.5 9.69 1
    Duranta mutisii 1 9.1 15.4 9.46 1
    Epidendrum sp3 1 9.1 15.9 10.04 1
    Epidendrum sp4 1 9.1 15.6 9.64 1
    Fragaria vesca 1 9.1 15.6 9.53 1
    Fuchsia boliviana 1 9.1 15.6 9.53 1
    Fuchsia paniculata 1 9.1 15.5 9.69 1
    Galianthe bogotensis 1 9.1 15.5 9.48 1
    Gamochaeta americana 1 9.1 15.6 9.53 1
    Heppiella ulmifolia 1 9.1 15.5 9.69 1
    Lantana rugosa 1 9.1 15.5 9.48 1
    Lepidaploa canescens 1 9.1 15.5 9.59 1
    Malaxis crispifolia 1 9.1 15.7 9.75 1
    Oxalis acetosella 1 9.1 15.5 9.48 1
    Panicum sp1 1 9.1 15.5 9.48 1
    Passiflora sp1 1 9.1 15.8 9.95 1
    Passiflora tripartita 1 9.1 15.5 9.69 1
    Peperomia glabella 1 9.1 15.6 9.71 1
    Phenax rugosus 1 9.1 15.7 9.87 1
    Phyllanthus salviifolius 1 9.1 15.7 9.75 1
    Physalis peruviana 1 9.1 15.4 9.46 1
    Pilea goudotiana 1 9.1 15.5 9.69 1
    Piper marginatum 1 9.1 15.7 9.87 1
    Ponthieva similis 1 9.1 15.5 9.59 1
    Pteris muricata 1 9.1 15.7 9.87 1
    Rubus macrocarpus 1 9.1 15.7 9.75 1
    Rubus sp1 1 9.1 15.6 9.53 1
    Salvia sp1 1 9.1 15.8 9.95 1
    Setaria italica 1 9.1 15.5 9.48 1
    Solanum caripense 1 9.1 15.4 9.46 1
    Solanum pseudocapsicum 1 9.1 15.7 9.87 1
    Solanum sp1 1 9.1 15.5 9.69 1
    Solanum sp2 1 9.1 15.7 9.87 1
    Stelis sp2 1 9.1 15.5 9.59 1
    Stenorrhynchos speciosum 1 9.1 15.6 9.53 1
    Styrax sp1 1 9.1 15.6 9.64 1
    Thelipteris sp1 1 9.1 15.7 9.75 1
    Tigridia pavonia 1 9.1 15.5 9.48 1
    Tillandsia sp5 1 9.1 15.5 9.48 1
    Tradescantia sp1 1 9.1 15.5 9.48 1
    Tradescantia sp2 1 9.1 15.8 9.95 1
    Vasquezia anemonifolia 1 9.1 15.5 9.48 1
    Cranichis ciliata 1 8.2 17.6 11.02 .8812
    Miconia resima 1 8.2 17.8 10.93 1
    Prunus sp1 1 7.9 17.5 11.11 .9398
    Viburnum tinoides 1 7.7 22.2 12.39 .975
    Berberis goudotii 1 6.7 16.9 11.22 .937
    Achyrocline satureioides 1 6.6 17.5 11.21 1
    Stelis sp3 1 6 17 11.44 1
    Hypochaeris radicata 1 5.8 17 11.38 1
    Asplenium radicans 1 5.7 19.1 12.02 1
    Elaphoglossum lingua 2 71.5 23.8 11.05 .001
    Chusquea scandens 2 45.4 24.4 12.15 .0634
    Prunus buxifolia 2 37 20 12.15 .0862
    Elaphoglossum cuspidatum 2 36 24.7 12.78 .1622
    Frangula goudotiana 2 34.8 24.2 13.27 .1654
    Galium hypocarpium 2 30.6 28.2 12.45 .3527
    Tillandsia sp1 2 27.3 22 12.54 .2665
    Clusia multiflora 2 25 16.8 11.13 .2272
    Digitalis purpurea 2 25 17.9 11.07 .173
    Diplostephium rosmarinifolium 2 25 17.1 11.48 .2316
    Elleanthus aurantiacus 2 25 17 11.37 .207
    Elleanthus purpureus 2 25 16.7 11.15 .2196
    Hedyosmum racemosum 2 25 17 11.58 .2244
    Ocotea longifolia 2 25 17.2 11.48 .2078
    Serpocaulon lasiopus 2 25 18 11.08 .173
    Smilax floribunda 2 25 17.3 10.56 .1638
    Tillandsia sp3 2 25 17.8 10.55 .1588
    Ocotea heterochroma 2 23 18.7 12.21 .2875
    Rhyncospora sp1 2 21.1 19.4 12.18 .3229
    Ilex kunthiana 2 20.6 23.7 12.46 .4899
    Hieracium avilae 2 17.7 20.7 12.56 .4343
    Blechnum cordatum 2 16.8 18.3 11.71 .3985
    Munnozia senecionidis 2 14.1 19.3 11.34 .6187
    Acaena cylindristachya 2 12.5 15.6 9.57 .6645
    Athyrium dombeyi 2 12.5 15.6 9.57 .6645
    Athyrium filixfemina 2 12.5 15.6 9.83 .6439
    Baccharis lehmannii 2 12.5 15.4 9.35 .6543
    Bejaria resinosa 2 12.5 15.4 9.35 .6543
    Calamagrostis effusa 2 12.5 15.6 9.57 .6645
    Chaetolepis lindeniana 2 12.5 15.6 9.57 .6645
    Elaphoglossum lindenii 2 12.5 15.6 9.79 .6505
    Elleanthus sp1 2 12.5 15.4 9.35 .6543
    Epidendrum caesaris 2 12.5 15.6 9.79 .6505
    Epidendrum cylindraceum 2 12.5 15.6 9.57 .6561
    Epidendrum excisum 2 12.5 15.5 9.67 .6523
    Eriosorus flexuosus 2 12.5 15.6 9.83 .6439
    Faramea sp1 2 12.5 15.6 9.83 .6439
    Fernandezia crystallina 2 12.5 15.4 9.35 .6543
    Fernandezia sanguinea 2 12.5 15.4 9.35 .6543
    Hypericum juniperinum 2 12.5 15.6 9.57 .6645
    Lycopodium jussiaei 2 12.5 15.5 9.47 .6583
    Macrocarpaea glabra 2 12.5 15.4 9.35 .6543
    Myrsine sp1 2 12.5 15.6 9.83 .6439
    Nyphogeton sp1 2 12.5 15.6 9.79 .6505
    Paspalum bonplandianum 2 12.5 15.6 9.57 .6645
    Ponthieva villosa 2 12.5 15.4 9.35 .6543
    Sauvagesia erecta 2 12.5 15.6 9.79 .6505
    Serpocaulon sessilifolium 2 12.5 15.5 9.67 .6523
    Smilax sp2 2 12.5 15.5 9.67 .6523
    Stelis argentata 2 12.5 15.4 9.35 .6543
    Stelis galeata 2 12.5 15.4 9.35 .6543
    Stelis pusilla 2 12.5 15.4 9.35 .6543
    Stelis sp4 2 12.5 15.4 9.35 .6543
    Stelis sp5 2 12.5 15.4 9.35 .6543
    Stelis sp6 2 12.5 15.4 9.35 .6543
    Oxalis spiralis 2 11.4 17.7 11.02 .7798
    Oxalis corniculata 2 11.2 17.2 11.32 .6857
    Peperomia microphylla 2 11.1 17.9 11.26 .759
    Sphyrospermum buxifolium 2 9.9 17.1 11.09 .7818
    Monochaetum bonplandii 2 9.3 17.4 11.21 .7926
    Jungia ferruginea 2 9.1 16.9 11.65 .7906
    Tibouchina grossa 2 7.6 18.9 12.37 .9214
    Monnina aestuans 3 100 17.6 11.34 .003
    Peperomia rotundata 3 90.3 18.6 12.32 .0044
    Vaccinium floribundum 3 87.1 23.5 13.73 .0112
    Nertera granadensis 3 85.4 32 14.96 .0206
    Oreopanax bogotensis 3 80.7 23 13.12 .0094
    Serpocaulon eleutherophlebium 3 71.4 21.2 11.47 .0106
    Ageratina boyacensis 3 50 15.7 9.76 .0638
    Arracacia sp1 3 50 15.7 9.76 .0638
    Bomarea multiflora 3 50 15.7 9.76 .0638
    Campyloneurum angustifolium 3 50 15.7 9.76 .0638
    Equisetum bogotense 3 50 15.7 9.76 .0638
    Fuchsia magellanica 3 50 15.7 9.76 .0638
    Geranium holosericeum 3 50 15.7 9.76 .0638
    Habenaria sp1 3 50 15.7 9.76 .0638
    Hydrocotyle bonplandii 3 50 15.7 9.76 .0638
    Miconia elaeoides 3 50 15.7 9.76 .0638
    Oxalis medicaginea 3 50 15.7 9.76 .0638
    Peperomia hartwegiana 3 50 15.7 9.76 .0638
    Pleopeltis rudis 3 50 15.7 9.76 .0638
    Rubus choachiensis 3 50 15.7 9.76 .0638
    Serpocaulon murorum 3 50 15.7 9.76 .0638
    Thelipteris sp2 3 50 15.7 9.76 .0638
    Asplenium monanthes 3 47.6 17.2 11.02 .028
    Oreopanax mutisianus 3 46.9 17.2 11.46 .036
    Hydrocotyle tenerrima 3 46.4 17.2 11.65 .0438
    Tillandsia sp2 3 46.1 19.3 12.32 .0446
    Epidendrum scutella 3 42.9 18.5 11.99 .0306
    Melpomene moniliformis 3 38.1 18.1 11.71 .0656
    Galium ascendens 3 38 18.6 12.36 .1008
    Bucquetia glutinosa 3 37.8 20.8 12.71 .0884
    Berberis glauca 3 36 18.3 12.18 .1064
    Passiflora adulterina 3 31.9 18.2 11.81 .1366
    Siphocampylus brevicalyx 3 30.3 18.4 11.67 .172
    Diphasiastrum thyoides 3 29.1 19.7 11.97 .1978
    Elaphoglossum engelii 3 27.7 19.4 11.92 .208
    Matelea mutisiana 3 26.8 17.2 11.49 .1672
    Pentacalia pulchella 3 24.4 20.1 12.42 .2801
    Pleopeltis sp1 3 24.1 17.2 11.14 .1864
    Symplocos theifolia 3 24.1 18.1 11.74 .3155
    Hesperomeles goudotiana 3 22.3 26.9 14.08 .5485
    Clethra fimbriata 3 21.8 17.2 11.1 .204
    Elaphoglossum gayanum 3 16 19.7 12.19 .4997
    Orthrosanthus chimboracensis 3 15.6 18.3 11.72 .4273
    Lycopodium clavatum 3 14.5 20.6 12.29 .6869
    Ageratina glyptophlebia 3 13.2 21.2 12.74 .6993
    Pleopeltis murora 3 9.4 21 12.74 .9032
    Peperomia galioides 3 8.7 21.4 12.8 .925
    Greigia stenolepis 4 99.9 21.2 11.38 .0002
    Rubus acanthophyllos 4 67.7 20.8 11.93 .0128
    Drimys granadensis 4 54.7 22.2 11.9 .033
    Scyphostelma tenella 4 54.1 21.7 12.68 .0102
    Myrsine dependens 4 47.6 19.6 11.93 .019
    Elaphoglossum latifolium 4 45.8 20.9 12.56 .0334
    Melpomene flabelliformis 4 41 21.2 12.44 .0656
    Blechnum schomburgkii 4 40 17.1 11.47 .086
    Hesperomeles obtusifolia 4 40 17.8 10.93 .0838
    Huperzia hippuridea 4 39.6 19.6 12.08 .086
    Luzula gigantea 4 37.6 18.9 12.07 .0896
    Hymenophyllum myriocarpum 4 36.8 21.1 12.25 .0692
    Persea ferruginea 4 35.9 19.9 12.33 .1052
    Agrostis perennans 4 34.7 21 12.68 .151
    Diplostephium ochraceum 4 30.1 19.4 11.37 .1748
    Cestrum buxifolium 4 25.8 24.9 13.12 .3467
    Elleanthus maculatus 4 24.6 18.3 12.1 .2525
    Piper artanthe 4 21.1 24.9 12.72 .5047
    Blechnum loxense 4 20 15.7 9.62 .2234
    Calceolaria microbefaria 4 20 15.9 10.1 .2212
    Carex pichinchensis 4 20 15.9 10.1 .2212
    Diplostephium floribundum 4 20 15.4 9.48 .206
    Elaphoglossum minutum 4 20 15.7 9.62 .2234
    Escallonia myrtilloides 4 20 15.4 9.48 .206
    Espeletiopsis corymbosa 4 20 15.7 9.62 .2234
    Geissanthus andinus 4 20 15.4 9.48 .206
    Hydrocotyle gunnerifolia 4 20 15.8 10.05 .2196
    Ilex sp1 4 20 15.4 9.48 .206
    Lepanthes gargantua 4 20 15.5 9.59 .2158
    Miconia latifolia 4 20 15.7 9.62 .2234
    Monnina fastigiata 4 20 15.7 9.62 .2234
    Pecluma sp1 4 20 15.8 10.05 .2196
    Pentacalia nitida 4 20 15.4 9.48 .206
    Peperomia alibacophylla 4 20 15.4 9.48 .206
    Pernettya gaultheria 4 20 15.4 9.48 .206
    Pilea sp1 4 20 15.4 9.48 .206
    Plagiogyria pectinata 4 20 15.7 9.62 .2234
    Pleurothallis lindenii 4 20 15.8 10.05 .2196
    Podocarpus oleifolius 4 20 15.4 9.48 .206
    Scyphostelma rugosa 4 20 15.9 10.1 .2212
    Smallanthus pyramidalis 4 20 15.5 9.59 .2158
    Stelis sp7 4 20 15.8 10.05 .2196
    Stelis sp8 4 20 15.5 9.59 .2158
    Stelis sp9 4 20 15.5 9.59 .2158
    Weinmannia fagaroides 4 20 15.4 9.48 .206
    Epidendrum sp1 4 19.2 17.6 10.49 .2639
    Epidendrum sp2 4 17.9 17.1 10.65 .4261
    Rubus ulmifolius 4 17.8 17.2 11.36 .4041
    Baccharis macrantha 4 17.1 17.6 11.73 .4161
    Rhynchospora macrochaeta 4 16.9 21.2 11.63 .5953
    Tillandsia biflora 4 15.2 16.8 11.44 .3915
    Rubus floribundus 4 14.4 17.2 11.67 .4759
    Oxalis tuberosa 4 12.8 17.2 11.37 .4971
    Ageratina asclepiadea 5 81.6 31.1 13.06 .0018
    Ulex europaeus 5 48.1 20 12.49 .022
    Tillandsia sp 1 5 47.6 34.7 11.25 .1376
    Vallea stipularis 5 47.1 30 11.14 .1014
    Bidens rubifolia 5 46 25.6 12.5 .062
    Miconia ligustrina 5 45.3 25.2 12.33 .072
    Myrcianthes leucoxyla 5 42.8 22.8 12.37 .0496
    Baccharis bogotensis 5 41.6 31.4 11.48 .1598
    Psychotria boqueronensis 5 40.5 24.7 13.01 .1062
    Monochaetum myrtoideum 5 34.9 26.3 11.44 .1796
    Ageratina tinifolia 5 33.3 17.3 11.63 .1168
    Malaxis sp1 5 33.3 17.9 10.62 .1054
    Peperomia arthurii 5 30.2 21.2 12.98 .2036
    Myrsine coriacea 5 30.1 26.3 11.59 .2907
    Weinmannia tomentosa 5 28.4 25.5 13.01 .3221
    Cavendishia bracteata 5 28.1 19.3 12.05 .1768
    Morella parvifolia 5 26.9 18.6 11.95 .23
    Pteridium aquilinum 5 26.7 19.2 11.47 .2006
    Gaiadendron punctatum 5 24.3 24.9 13.19 .4045
    Macleania rupestris 5 23.1 27 14.39 .5399
    Alnus acuminata 5 16.7 16 10.11 .4161
    Asteraceae sp1 5 16.7 15.6 9.6 .4119
    Cortaderia nitida 5 16.7 15.6 9.85 .4005
    Diplostephium rosmarinifolius 5 16.7 15.7 9.83 .4061
    Elaphoglossum sp1 5 16.7 16 10.11 .4161
    Epidendrum sisgaense 5 16.7 15.5 9.44 .4015
    Gaultheria erecta 5 16.7 15.6 9.85 .4005
    Lantana camara 5 16.7 15.6 9.6 .4119
    Passiflora capsularis 5 16.7 15.6 9.6 .4119
    Peperomia angularis 5 16.7 15.6 9.6 .4119
    Polystichum lehmannii 5 16.7 15.4 9.42 .3975
    Stachys arvensis 5 16.7 15.6 9.6 .4119
    Tillandsia sp7 5 16.7 15.6 9.6 .4119
    Tillandsia sp8 5 16.7 15.6 9.6 .4119
    Viburnum triphyllum 5 16 25.4 10.86 .8464
    Tillandsia elongata 5 14.7 17.1 11.33 .5341
    Thelypteris rudis 5 14.6 17.3 11.19 .5423
    Rhynchospora nervosa 5 13.6 16.9 11.4 .5347
    Gaultheria anastomosans 5 12.8 17 11.42 .5839
    Cranichis sp1 5 12.5 16.6 11.45 .5659
    Pernettya prostrata 5 11.8 18.8 12.09 .6569
    Pecluma paradiseae 5 11.4 16.8 11.24 .6415
    Cardamine ovata 5 11 18.3 11.87 .6567
    Chromolaena sp2 5 10.1 16.9 11.31 .7427
    Myrsine guianensis 5 7.7 16.7 11.21 .9112

    APPENDIX A6

    NMDS tree layer graphs and analysis of variance boxplots

    NMDS graphs of the tree layer. (a) Ordination graph of plots in tree species space for axis 1–2: cluster analysis groups are outlined. (b) Ordination graph of plots in tree species space with plotted variables for axis 1–2, with only the variables with ‘p.max = 0.05’ plotted.

    The variables that most correlated with the ordination axes (RSq > 0.35 for any of the 3 ordination axis, Table 1) and therefore with species composition and abundances are depicted clockwise. For full variable names and acronyms please refer to Appendix A2
    .

    Boxplot of analysis of variance for tree layer groups variables. Only variables that significantly differed among various tree groups (Figure 2) are shown. From right to left: age; presence of cattle inside the plot; (c) presence of cattle within 50 m from the plot; presence of cultivated fields within 100 m from the plot; elevation; Shannon's landscape diversity in 1 km buffer; Like adjacencies in 1 km buffer; logging; mean annual temperature; relative humidity.

    APPENDIX A7

    NMDS variables correlation with ordination axes for tree and understory layer

    TREES

    Variable NMDS1 NMDS2 R sq p
    elev 0.986936 −0.16111 0.842327 .001
    rel_hum 0.557264 −0.83034 0.814799 .001
    like_adjacencies −0.77575 0.631046 0.715877 .001
    splitting_index 0.647679 −0.76191 0.712051 .001
    patch_cohesion_index −0.61603 0.787721 0.681776 .001
    logg 0.516505 −0.85628 0.633668 .001
    greatest_patch −0.54231 0.84018 0.62502 .001
    largest_patch_index −0.54197 0.840398 0.624739 .001
    land_cover −0.53243 0.846474 0.612971 .001
    landscape_porportion −0.53186 0.846834 0.612778 .001
    overall_core −0.64958 0.760295 0.590216 .001
    mean_T −0.5827 0.812684 0.538388 .001
    landscape_shannon 0.392306 −0.91983 0.53266 .001
    effective_meshsize −0.47047 0.882414 0.519565 .002
    landscape_division 0.470396 −0.88246 0.519501 .002
    %n_CON_ind_T 0.598542 0.801091 0.498647 .001
    cult_100 0.828407 −0.56013 0.489726 .001
    cattle 0.69714 −0.71693 0.487354 .001
    n_CON_ind_T 0.728414 0.685137 0.474397 .001
    landscape_simpson 0.333984 −0.94258 0.450877 .003
    mliqC 0.917959 0.396676 0.430102 .001
    cattle_100 0.535527 −0.84452 0.421884 .003
    age 0.230218 0.973139 0.407116 .004
    cattle_50m 0.706548 −0.70766 0.387378 .006
    road_dist 0.908312 0.418293 0.359839 .001
    landscape_pielou 0.549647 −0.8354 0.353878 .004
    edge_density 0.922612 0.385729 0.343423 .002
    n_patches 0.715658 −0.69845 0.343347 .004
    patch_density 0.716517 −0.69757 0.342699 .004
    edge_lenght 0.922698 0.385524 0.341936 .002
    m_DBH 0.523014 0.852324 0.316577 .004
    n.10DBH 0.360665 0.932695 0.29713 .007
    fragment −0.68563 0.727951 0.263566 .016
    stems_tree −0.84893 −0.5285 0.261082 .014
    edge 0.690298 −0.72352 0.256775 .025
    %n_CON_sp_T 0.596982 0.802255 0.254204 .013
    people_density_1km −0.91227 0.409586 0.253024 .015
    mmoss 0.908742 0.417359 0.245418 .022
    mean_prec 0.925366 0.379075 0.245257 .013
    mean_H 0.356376 0.934343 0.223591 .017
    m_cov_inv_U −0.95141 −0.30794 0.217533 .025
    nn_distance 0.589863 −0.8075 0.216971 .031
    people_density_5km −0.92481 0.380421 0.209615 .032
    n_inv_sp_U −0.6223 −0.78278 0.20597 .027
    Giniwe −0.92763 −0.37349 0.20516 .032
    mcobT 0.216899 0.976194 0.204958 .028
    TPD −0.78427 −0.62042 0.201613 .044
    X._all 0.468041 −0.88371 0.200479 .041
    path_dist 0.685608 −0.72797 0.195792 .048
    protected 0.615398 0.788216 0.195422 .04
    mean_patch −0.06022 0.998185 0.194229 .042
    Giniun −0.92716 −0.37466 0.185068 .051
    HsesMPD 0.988703 −0.14989 0.176882 .068
    HsesMNTD 0.348156 −0.93744 0.171425 .065
    n_CON_sp_T 0.648282 0.761401 0.17061 .067
    cult_50m 0.96786 0.25149 0.16273 .074
    n_stems −0.45592 −0.89002 0.160024 .075
    TsesMNTD −0.81931 −0.57335 0.159924 .081
    smallest_patch 0.118311 0.992977 0.156713 .07
    median_patch 0.117137 0.993116 0.155408 .075
    n_trees 0.219077 −0.97571 0.154968 .096
    AGBplot 0.998705 −0.05088 0.154366 .095
    cult_500 0.507842 −0.86145 0.153806 .098
    mleaf −0.85047 −0.52603 0.152094 .095
    HPD −0.228 −0.97366 0.150516 .095
    TsesPD −0.51544 −0.85693 0.148752 .102
    morqT 0.372927 0.927861 0.145118 .083
    mbrioT −0.13913 0.990274 0.144544 .099
    mhelC −0.99549 0.09491 0.14296 .097
    n_FST_ind_T 0.034581 −0.9994 0.141519 .125
    H_var 0.642211 0.766528 0.141257 .12
    FD −0.96828 −0.24987 0.140421 .116
    mCWD 0.756802 −0.65364 0.137304 .115
    FRic −0.19979 −0.97984 0.137234 .117
    HMPD 0.97027 −0.24202 0.129168 .143
    TsesMPD 0.417913 −0.90849 0.127914 .142
    other −0.97008 −0.2428 0.126107 .117
    mliqT 0.995431 0.095486 0.124934 .171
    HsesPD 0.176577 −0.98429 0.121806 .148
    mbroT 0.145699 0.989329 0.121332 .176
    TsesMNTDABU −0.99881 0.048778 0.119051 .149
    mbroC −0.26677 0.96376 0.116187 .166
    mhelT −0.16551 0.986208 0.115102 .146
    TSR −0.92753 −0.37375 0.113505 .181
    fractal_dimesion_index 0.501947 0.864899 0.110553 .182
    m_patchshape_ratio −0.13742 −0.99051 0.103988 .201
    mAGBT 0.649443 0.760411 0.103937 .215
    n_sp.10DBH −0.80905 −0.58774 0.101004 .225
    TMPD 0.336675 −0.94162 0.098842 .225
    mcobC 0.265827 0.964021 0.097694 .216
    sol_rad −0.17591 0.984406 0.095741 .241
    north −0.40907 −0.9125 0.093814 .22
    TPIELOU 0.314002 −0.94942 0.093106 .219
    RaoQ 0.764773 −0.6443 0.092153 .264
    house_dist 0.316094 0.948728 0.085966 .272
    slope −0.89386 0.448348 0.085597 .29
    Hshann 0.169443 −0.98554 0.083351 .282
    cattle_500 0.292148 −0.95637 0.080359 .306
    n_sp.20DBH −0.76282 0.646616 0.077075 .32
    HSR −0.34487 −0.93865 0.075683 .323
    TMNTD −0.84452 −0.53553 0.07518 .339
    TMPDABU 0.162029 −0.98679 0.074487 .329
    Tsimp 0.02132 −0.99977 0.074268 .306
    HMNTD 0.7732 −0.63416 0.073592 .32
    msoil −0.6291 0.777325 0.071115 .372
    TMNTDABU −0.99015 −0.14002 0.06572 .38
    %_5 −0.20588 −0.97858 0.06549 .365
    HsesMNTDABU −0.52315 −0.85224 0.064366 .377
    n.20DBH 0.16129 0.986907 0.060851 .392
    Tshann −0.17924 −0.9838 0.060737 .393
    n_FST_sp_T −0.25137 −0.96789 0.058602 .413
    mundstr −0.55902 −0.82915 0.056845 .435
    HPIELOU 0.440781 −0.89761 0.056559 .413
    FEve 0.222091 0.975026 0.052515 .481
    east −0.59224 −0.80576 0.051569 .482
    Hsimp 0.302214 −0.95324 0.049729 .482
    FDis 0.420161 −0.90745 0.046219 .516
    DBH_var 0.953164 0.302455 0.043325 .537
    n_inv_sp_T −0.17768 0.984088 0.038882 .571
    HsesMPDABU 0.262408 0.964957 0.038792 .567
    max_H 0.943325 0.33187 0.038476 .527
    track_dist 0.613653 0.789576 0.036408 .575
    FDiv 0.063578 −0.99798 0.031273 .634
    TsesMPDABU 0.772151 −0.63544 0.029198 .665
    morqC −0.22709 0.973873 0.027614 .666
    m_H_understory 0.719951 0.694025 0.018554 .754
    HMPDABU 0.997157 0.075357 0.012729 .835
    tour 0.074111 0.99725 0.011967 .849
    m_cov_nat_U −0.04515 −0.99898 0.011738 .837
    HMNTDABU −0.99539 −0.09595 0.011378 .848
    mbrioC 0.532531 0.84641 0.009829 .886
    n_large_trees −0.57682 0.816872 0.003727 .948

    UNDERSTORY

    Variable NMDS1 NMDS2 R sq p
    elev 0.9541 −0.2994 0.7424 .001
    %n_CON_ind_T 0.6972 0.7169 0.7030 .001
    mliqC 0.8629 −0.5054 0.6210 .001
    fragment −0.4236 0.9058 0.6192 .001
    n_CON_ind_T 0.7564 0.6542 0.5868 .001
    overall_core −0.5046 0.8633 0.5779 .001
    nn_distance 0.2311 −0.9729 0.5678 .001
    n_CON_sp_T 0.4123 0.9110 0.5652 .001
    %n_CON_sp_T 0.4612 0.8873 0.5638 .001
    road_dist 0.8779 −0.4788 0.5522 .001
    edge_density 0.7744 −0.6327 0.5467 .001
    edge_lenght 0.7760 −0.6307 0.5458 .001
    m_DBH 0.5210 0.8536 0.5361 .001
    like_adjacencies −0.7263 0.6873 0.5287 .001
    landscape_pielou 0.3249 −0.9457 0.5282 .001
    people_density_1km −0.6546 0.7560 0.4927 .001
    landscape_simpson 0.1586 −0.9873 0.4885 .001
    mAGBT 0.5001 0.8659 0.4860 .001
    people_density_5km −0.6587 0.7524 0.4508 .001
    effective_meshsize −0.3264 0.9452 0.4345 .001
    landscape_division 0.3269 −0.9450 0.4341 .001
    landscape_shannon 0.2587 −0.9660 0.4300 .001
    n_stems −0.3517 −0.9361 0.4254 .001
    land_cover −0.4475 0.8943 0.4112 .002
    landscape_porportion −0.4483 0.8939 0.4105 .002
    n_trees −0.0938 −0.9956 0.4001 .001
    cult_500 0.2316 −0.9728 0.3953 .001
    mean_H 0.6510 0.7591 0.3926 .001
    n.20DBH 0.3331 0.9429 0.3919 .001
    greatest_patch −0.4765 0.8792 0.3789 .003
    largest_patch_index −0.4773 0.8787 0.3783 .003
    H_var 0.7528 0.6583 0.3781 .002
    mean_patch 0.1234 0.9924 0.3757 .001
    age 0.5183 0.8552 0.3631 .001
    cattle_100 0.4406 −0.8977 0.3629 .002
    n.10DBH 0.5471 0.8371 0.3616 .002
    DBH_var 0.3904 0.9206 0.3529 .001
    n_patches 0.5521 −0.8338 0.3414 .002
    m_patchshape_ratio −0.2250 −0.9744 0.3411 .001
    patch_density 0.5518 −0.8340 0.3409 .002
    TsesMNTD −0.6189 0.7855 0.3379 .004
    fractal_dimesion_index 0.3886 0.9214 0.3230 .001
    AGBplot 0.6484 0.7613 0.3213 .002
    stems_tree −0.5974 −0.8020 0.3089 .006
    mbroT 0.3658 0.9307 0.3069 .005
    TsesMNTDABU −0.4415 0.8973 0.3031 .009
    mbroC 0.1503 0.9886 0.3008 .007
    median_patch 0.2472 0.9690 0.2962 .002
    smallest_patch 0.2492 0.9685 0.2959 .003
    TMNTDABU −0.3654 0.9309 0.2951 .007
    n_sp.20DBH −0.2002 0.9798 0.2940 .003
    mmoss 0.7328 −0.6804 0.2935 .011
    protected 0.9616 −0.2746 0.2768 .005
    mcobT 0.5901 0.8073 0.2766 .009
    cattle_50m 0.6646 −0.7472 0.2739 .01
    cattle 0.6734 −0.7392 0.2683 .013
    HMPD 0.4505 0.8928 0.2675 .013
    n_FST_ind_T −0.0733 −0.9973 0.2597 .017
    TsesPD −0.5789 0.8154 0.2562 .015
    HsesMPD 0.5830 0.8125 0.2534 .016
    TMPD 0.0440 0.9990 0.2481 .02
    morqT 0.7128 0.7014 0.2452 .019
    TMNTD −0.5690 0.8223 0.2441 .017
    patch_cohesion_index −0.7432 0.6691 0.2368 .017
    n_large_trees 0.1904 0.9817 0.2271 .019
    mleaf −0.9005 −0.4348 0.2246 .025
    mcobC 0.6767 0.7362 0.2211 .031
    mliqT 0.7831 −0.6219 0.2199 .026
    sol_rad 0.3578 −0.9338 0.2166 .029
    tour 0.2983 −0.9545 0.2130 .037
    edge 0.6123 −0.7907 0.2109 .033
    splitting_index 0.8714 −0.4905 0.2087 .028
    cult_100 0.8494 −0.5278 0.2079 .034
    n_inv_sp_U −0.7628 −0.6466 0.2069 .034
    TsesMPD 0.0840 0.9965 0.2059 .037
    mhelT 0.2106 0.9776 0.1995 .038
    max_H 0.7056 0.7086 0.1992 .043
    mean_prec 0.8755 −0.4832 0.1907 .053
    house_dist 0.5493 −0.8356 0.1902 .055
    TMPDABU 0.1551 0.9879 0.1872 .049
    TsesMPDABU 0.1618 0.9868 0.1862 .046
    Giniwe −0.5636 −0.8260 0.1815 .049
    n_sp.10DBH −0.6307 0.7761 0.1762 .061
    mhelC −0.4689 0.8833 0.1745 .06
    TPD −0.6826 0.7308 0.1737 .083
    cattle_500 0.0966 −0.9953 0.1703 .068
    morqC 0.3163 0.9487 0.1693 .069
    mean_T −0.8561 0.5168 0.1561 .075
    msoil −0.2462 0.9692 0.1506 .102
    Giniun −0.5473 −0.8369 0.1506 .096
    other −0.9893 0.1462 0.1492 .078
    mundstr −0.4332 0.9013 0.1469 .108
    HMNTD 0.1854 −0.9827 0.1441 .117
    m_cov_inv_U −0.9990 0.0445 0.1427 .124
    FDiv −0.1388 0.9903 0.1402 .122
    %_all 0.3145 −0.9492 0.1391 .124
    cult_50m 0.7689 −0.6394 0.1348 .101
    HsesMNTDABU −0.8341 −0.5516 0.1219 .157
    HPIELOU 0.1081 −0.9941 0.1217 .143
    rel_hum 0.8988 −0.4384 0.1211 .152
    logg 0.6668 −0.7452 0.1135 .157
    m_cov_nat_U −0.1436 0.9896 0.1131 .167
    mCWD 0.6105 0.7920 0.1075 .171
    %_5 −0.3215 −0.9469 0.1066 .196
    east −0.8527 −0.5223 0.1063 .162
    HsesMNTD −0.0559 −0.9984 0.1007 .216
    HsesMPDABU 0.0924 0.9957 0.0993 .197
    TPIELOU 0.4560 0.8900 0.0941 .242
    n_FST_sp_T −0.2760 −0.9611 0.0928 .267
    RaoQ 0.8038 0.5949 0.0841 .288
    slope −0.9069 −0.4214 0.0770 .335
    FD −0.7789 0.6272 0.0705 .365
    Tshann 0.0868 0.9962 0.0681 .372
    Tsimp 0.2034 0.9791 0.0680 .385
    track_dist 0.9412 0.3377 0.0674 .375
    HPD −0.8959 0.4443 0.0578 .428
    HMNTDABU −0.7611 −0.6487 0.0570 .42
    Hshann −0.1013 −0.9949 0.0562 .434
    FEve 0.4481 0.8940 0.0544 .433
    TSR −0.7679 0.6406 0.0532 .46
    mbrioT 0.0471 0.9989 0.0521 .44
    m_H_understory 0.2972 0.9548 0.0512 .47
    FDis 0.4714 0.8819 0.0497 .486
    path_dist 0.7276 0.6860 0.0390 .572
    Hsimp 0.0455 −0.9990 0.0381 .57
    n_inv_sp_T 0.2033 −0.9791 0.0380 .575
    HSR −0.7537 0.6573 0.0378 .568
    north −0.7210 −0.6929 0.0376 .566
    FRic −0.7253 0.6885 0.0244 .722
    HsesPD −0.4330 −0.9014 0.0243 .722
    mbrioC 0.7545 0.6563 0.0112 .868
    HMPDABU 0.3434 0.9392 0.0067 .91

    APPENDIX A8

    NMDS understory layer graphs and analysis of variance boxplots

    NMDS of understory. (a) ordination graph of plots in understory species space for axis 1–2: no group could be visually distinguished and cluster analysis groups are outlined (b) Ordination graph of plots in understory species space with plotted variables for axis 1–2, with only the variables with ‘p.max = 0.05’ plotted. A table offering variable correlations with the ordination axes is available in Appendix A8.

    Boxplot of analysis of variance for understory groups variables. Only variables that significantly differed among various understory groups are shown: elevation; edge density in 1 km buffer; distances from roads; presence of cultivated fields within 100 m from the plot; mean tree AGB; Shannon's landscape diversity in 1 km buffer; people population density in 5 km buffer; presence of cultivated fields within 500 m from the plot.

    DATA AVAILABILITY STATEMENT

    The tree layer and understory sampling datasets and the complete table of variables have been submitted to the Dryad digital repository (https://doi.org/10.5061/dryad.z612jm6b5).

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.