Combined effects of elevated CO2 concentration and Wolbachia on Hylyphantes graminicola (Araneae: Linyphiidae)
Qichen Su
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorXia Wang
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorNaila Ilyas
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorFan Zhang
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorYueli Yun
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorChen Jian
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorCorresponding Author
Yu Peng
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Correspondence
Yu Peng, The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China.
Email: [email protected]
Search for more papers by this authorQichen Su
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorXia Wang
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorNaila Ilyas
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorFan Zhang
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorYueli Yun
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorChen Jian
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Search for more papers by this authorCorresponding Author
Yu Peng
The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
Correspondence
Yu Peng, The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China.
Email: [email protected]
Search for more papers by this authorDATA AVAILABILITY STATEMENT: All essential data are available in the text.
Abstract
The increasing concentration of carbon dioxide in atmosphere is not only a major cause of global warming, but it also adversely affects the ecological diversity of invertebrates. This study was conducted to evaluate the effect of elevated CO2 concentration (ambient, 400 ppm and high, 800 ppm) and Wolbachia (Wolbachia-infected, W+ and Wolbachia-uninfected, W−) on Hylyphantes graminicola. The total survival rate, developmental duration, carapace width and length, body weight, sex ratio, net reproductive rate, nutrition content, and enzyme activity in H. graminicola were examined under four treatments: W− 400 ppm, W− 800 ppm, W+ 400 ppm, and W+ 800 ppm. Results showed that Wolbachia-infected spiders had significantly decreased the total developmental duration. Different instars showed variations up to some extent, but no obvious effect was found under elevated CO2 concentration. Total survival rate, sex ratio, and net reproductive rate were not affected by elevated CO2 concentration or Wolbachia infection. The carapace width of Wolbachia-uninfected spiders decreased significantly under elevated CO2 concentration, while the width, length and weight were not significantly affected in Wolbachia-infected spiders reared at ambient CO2 concentration. The levels of protein, specific activities of peroxidase, and amylase were significantly increased under elevated CO2 concentration or Wolbachia-infected spiders, while the total amino content was only increased in Wolbachia-infected spiders. Thus, our current finding suggested that elevated CO2 concentration and Wolbachia enhance nutrient contents and enzyme activity of H. graminicola and decrease development duration hence explore the interactive effects of factors which were responsible for reproduction regulation, but it also gives a theoretical direction for spider's protection in such a dynamic environment. Increased activities of enzymes and nutrients caused by Wolbachia infection aids for better survival of H. graminicola under stress.
CONFLICT OF INTEREST
All of the authors declare that they have no conflict of interest in the publication.
Open Research
DATA ACCESSIBILITY
All essential data are available in the text.
REFERENCES
- Agrell, J., McDonald, E. P., & Lindroth, R. L. (2000). Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 88(2), 259–272. https://doi.org/10.1034/j.1600-0706.2000.880204.x
- Ahmad, S., & Pardini, R. S. (1990). Antioxidant defense of the cabbage looper, Trichoplusia ni: Enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochemistry and Photobiology, 51(3), 305–311. https://doi.org/10.1111/j.1751-1097.1990.tb01715.x
- Andresen, L. C., Yuan, N., Seibert, R., Moser, G., Kammann, C. I., Luterbacher, J., … Müller, C. (2018). Biomass responses in a temperate European grassland through 17 years of elevated CO2. Global Change Biology, 24(9), 3875–3885. https://doi.org/10.1111/gcb.13705
- Avilés, L., & Maddison, W. (1991). When is the sex ratio biased in social spiders? Chromosome studies of embryos and male meiosis in Anelosimus species (Araneae, Theridiidae). Journal of Arachnology, 19, 126–135.
- Avilés, L., Varas, C., & Dyreson, E. (1999). Does the African social spider Stegodyphus dumicola control the sex of individual offspring? Behavioral Ecology Sociobiology, 46(4), 237–243. https://doi.org/10.1007/s002650050615
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
- Braig, H. R., Zhou, W., Dobson, S. L., & O'Neill, S. L. (1998). Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. Journal of Bacteriology, 180(9), 2373–2378.
- Brennan, L. J., Keddie, B. A., Braig, H. R., & Harris, H. L. (2008). The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS ONE, 3(5), e2083. https://doi.org/10.1371/journal.pone.0002083
- Brownlie, J. C., Cass, B. N., Riegler, M., Witsenburg, J. J., Iturbe-Ormaetxe, I., McGraw, E. A., & O'Neill, S. L. (2009). Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Path, 5(4), e1000368. https://doi.org/10.1371/journal.ppat.1000368
- Chen, F., Wu, G., Ge, F., Parajulee, M. N., & Shrestha, R. B. (2005). Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomologia Experimentalis et Applicata, 115(2), 341–350. https://doi.org/10.1111/j.1570-7458.2005.00258.x
- Collins, S., & Bell, G. (2004). Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 431(7008), 566–569.
- Cramer, K. L., & Maywright, A. V. (2008). Cold temperature tolerance and distribution of the brown recluse spider Loxosceles reclusa (Araneae, Sicariidae) in Illinois. Journal of Arachnology, 36(1), 136–139.
- Deng, Y., Wang, W., Yu, P., Xi, Z., Xu, L., Li, X., & He, N. (2013). Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. Nanoscale Research Letters, 8, 190.
- Dubovskiy, I. M., Martemyanov, V. V., Vorontsova, Y. L., Rantala, M. J., Gryzanova, E. V., & Glupov, V. V. (2008). Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemisty Physiology Part C: Toxicology and Pharmacology, 148(1), 7112–5.
- Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstädter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27
- Fridell, Y. W. C., Sánchez-Blanco, A., Silvia, B. A., & Helfand, S. L. (2005). Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metabolism, 1(2), 145–152. https://doi.org/10.1016/j.cmet.2005.01.005
- Gao, F., Zhu, S. R., Sun, Y. C., Du, L., Parajulee, M., Kang, L., & Ge, F. (2008). Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Propylaea japonica. Environmental Entomology, 37(1), 29–37.
- Ge, F., Chen, F., Wu, G., & Sun, Y. (2010). Research advance on the response of insects to elevated CO2 in China. Chinese Bulletin of Entomology, 47(2), 229–235.
- Gonzaga, M. D. O., & Vasconcellos-Neto, J. (2002). Influence of collective feeding on weight gain and size variability of Anelosimus jabaquara Levi 1956 (Araneae: Theridiidae). Behaviour, 139(11), 1431–1442. https://doi.org/10.1163/15685390260514708
- Goodacre, S. L., Martin, O. Y., Thomas, C. G., & Hewitt, G. M. (2006). Wolbachia and other endosymbiont infections in spiders. Molecular Ecology, 15(2), 517–527. https://doi.org/10.1111/j.1365-294X.2005.02802.x
- Gunnarsson, B., Goodacre, S. L., & Hewitt, G. M. (2009). Sex ratio, mating behaviour and Wolbachia infections in a sheet web spider. Biological Journal of the Linnean Society, 98(1), 181–186. https://doi.org/10.1111/j.1095-8312.2009.01247.x
- Hagstrum, D. W. (1971). Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Annals of Entomological Society America, 64(4), 757–760.
- Henrichfreise, B., Schiefer, A., Schneider, T., Nzukou, E., Poellinger, C., Hoffmann, T. J., & Hoerauf, A. (2009). Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: Why is lipid II needed? Molecular Microbiology, 73(5), 913–923.
- Henschel, J. R., Ward, D., & Lubin, Y. (1992). The importance of thermal factors for nest-site selection, web construction and behaviour of Stegodyphus lineatus (Araneae: Eresidae) in the Negev desert. Journal of Thermal Biology, 17(2), 97–106. https://doi.org/10.1016/0306-4565(92)90005-Z
- Jakob, E. M., Marshall, S. D., & Uetz, G. W. (1996). Estimating fitness: A comparison of body condition indices. Oikos, 77, 61–67. https://doi.org/10.2307/3545585
- Joutei, A. B., Roy, J., Van Impe, G., & Lebrun, P. (2000). Effect of elevated CO2 on the demography of a leaf-sucking mite feeding on bean. Oecologia, 123(1), 75–81. https://doi.org/10.1007/s004420050991
- Kehlmaier, C., Michalko, R., & Korenko, S. (2012). Ogcodes fumatus (Diptera: Acroceridae) reared from Philodromus cespitum (Araneae: Philodromidae), and first evidence of Wolbachia Alphaproteobacteria in Acroceridae. Museum and Institute of Zoology, 62(2), 281–286.
- Kong, Y. P., Huang, Q. C., Liu, M. H., & Liu, Y. (2007). Parametric optimization on the sensitive determination of midgut alpha-amylase in larvae of Mythimna separata Walker. Acta Entomol Sinica, 50(10), 981–988.
- Korenko, S., Smerda, J., & Pekár, S. (2009). Life-history of the parthenogenetic oonopid spider, Triaeris stenaspis (Araneae: Oonopidae). European Journal of Entomology, 106(2), 217–223. https://doi.org/10.14411/eje.2009.028
- LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J., Perlmutter, J. I., Shropshire, J. D., … Bordenstein, S. R. (2017). Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature, 543(7644), 243–247.
- Li, C. C., Li, G. Y., Yun, Y. L., Chen, J., Zhang, Z. T., & Peng, Y. (2016). The effects of cadmium exposure on fitness-related traits and antioxidant responses in the wolf spider, Pardosa pseudoannulata. Bulletin of Environmental Contamination and Toxicology, 97(1), 31–36. https://doi.org/10.1007/s00128-016-1829-0
- Li, H. X., Xiao, Y., Cao, L. L., Yan, X., Li, C., Shi, H. Y., … Ye, Y. H. (2013). Cerebroside c increases tolerance to chilling injury and alters lipid composition in wheat roots. PLoS ONE, 8(9), e73380.
- Lowrie, D. C. (1980). Starvation longevity of Loxosceles laeta (Nicolet) (Araneae). Entomological News, 91(4), 130–132.
- Lu, C., Qi, J., Hettenhausen, C., Lei, Y., Zhang, J., Zhang, M., & Wu, J. (2018). Elevated CO2 differentially affects tobacco and rice defense against lepidopteran larvae via the jasmonic acid signaling pathway. Journal of Integrative Plant Biology, https://doi.org/10.1111/jipb.12633
- Maloney, D., Drummond, F. A., & Alford, R. (2003). TB190: Spider predation in agroecosystems: Can spiders effectively control pest populations. Dissertation, University of Maine.
- Matoo, O. B., Ivanina, A. V., Ullstad, C., Beniash, E., & Sokolova, I. M. (2013). Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 164(4), 545–553. https://doi.org/10.1016/j.cbpa.2012.12.025
- Melnikow, E., Xu, S., Liu, J., Bell, A. J., Ghedin, E., Unnasch, T. R., & Lustigman, S. (2013). A potential role for the interaction of Wolbachia surface proteins with the Brugia malayi glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis. PLoS Neglected Tropical Diseases, 7(4), e2151. https://doi.org/10.1371/journal.pntd.0002151
- Miyashita, K. (1969). Effects of locomotory activity, temperature and hunger on the respiratory rate of Lycosa T-insignita Boes. et Str. (Araneae: Lycosidae). Applied Entomology and Zoology, 4(3), 105–113.
10.1303/aez.4.105 Google Scholar
- Murray, T. J., Ellsworth, D. S., Tissue, D. T., & Riegler, M. (2013). Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Global Change Biology, 19(5), 1407–1416.
- Nikolouli, K., Colinet, H., Renault, D., Enriquez, T., Mouton, L., Gibert, P., … Bourtzis, K. (2017). Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. Journal of Pest Science, 91(2), 489–503. https://doi.org/10.1007/s10340-017-0944-y
- Osbrink, W. L., Trumble, J. T., & Wagner, R. E. (1987). Host suitability of Phaseolus lunata for Trichoplusia ni (Lepidoptera: Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology, 16(3), 639–644. https://doi.org/10.1093/ee/16.3.639
- Pascar, J., & Chandler, C. H. (2018). A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ, 6, e5486. https://doi.org/10.7717/peerj.5486.
- Pérez-López, U., Robredo, A., Lacuesta, M., Sgherri, C., Muñoz-Rueda, A., Navari-Izzo, F., & Mena-Petite, A. (2009). The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiologia Plantarum, 135(1), 29–42.
- Rowley, S. M., Raven, R. J., & McGraw, E. A. (2004). Wolbachia pipientis in Australian spiders. Current Microbiology, 49(3), 208–214. https://doi.org/10.1007/s00284-004-4346-z
- Sarakatsanou, A., Diamantidis, A. D., Papanastasiou, S. A., Bourtzis, K., & Papadopoulos, N. T. (2011). Effects of Wolbachia on fitness of the Mediterranean fruit fly (Diptera: Tephritidae). Journal of Applied Entomology, 135(7), 554–563. https://doi.org/10.1111/j.1439-0418.2011.01610.x
- Schuler, H., Egan, S. P., Hood, G. R., Busbee, R. W., Driscoe, A. L., & Ott, J. R. (2018). Diversity and distribution of Wolbachia in relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp. BMC Evolutionary Biology, 18(1), 37.
- Sun, Y. C., Jing, B. B., & Ge, F. (2009). Response of amino acid changes in Aphis gossypii (Glover) to elevated CO2 levels. Journal of Applied Entomology, 133(3), 189–197.
- Sun, Y. C., Jing, B. B., & Ge, F. (2010). Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. Agriculture, Ecosystems and Environment, 135(1), 140–147.
- Tanaka, K., Endo, S., & Kazano, H. (2000). Toxicity of insecticides to predators of rice planthoppers: Spiders, the mired bug, and the dryinid wasp. Applied Entomology Zoology, 35(1), 177–187.
- Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E., & Sokolova, I. M. (2011). Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress. Journal of Experimental Biology, 214(11), 1836–1844. https://doi.org/10.1242/jeb.055475
- Wang, X., Zuo, L., Yun, Y., Chen, J., Zhang, Z., & Peng, Y. (2016). The responses of a funnel-web weaving spider, Agelena labyrinthica, to elevated CO2 concentration. Entomologia Experimentalis et Applicata, 161(3), 213–218.
- Weisburg, W. G., Dobson, M. E., Samuel, J. E., Dasch, G. A., Mallavia, L. P., Baca, O., … Woese, C. R. (1989). Phylogenetic diversity of the Rickettsiae. Journal of Bacteriology, 171(8), 4202–4206. https://doi.org/10.1128/jb.171.8.4202-4206.1989
- WMO Greenhouse Gas Bulletin (2016). The state of greenhouse gases in the atmosphere based on global observations through 2015.
- Wong, Z. S., Brownlie, J. C., & Johnson, K. N. (2015). Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations. Applied and Environmental Microbiology, 81(9), 3001–3005. https://doi.org/10.1128/AEM.03847-14
- Wu, G., Chen, F. J., & Ge, F. (2006). Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. Journal of Applied Entomology, 130(1), 2–9.
- Yang, K. D., Zhang, H. Y., Qian, H. T., Dong, H., Zhang, Y., & Cong, B. (2008). Effect of Wolbachia infection on fecundity, developmental duration and survival of Trichogramma dendrolimi. Chinese Biological Control, 24(3), 210–214.
- Yun, Y., Lei, C., Peng, Y. U., Liu, F., Chen, J., & Chen, L. (2011). Wolbachia strains typing in different geographic population spider, Hylyphantes graminicola (Linyphiidae). Current Microbiology, 62(1), 139–145. https://doi.org/10.1007/s00284-010-9686-2
- Yun, Y. L., Peng, Y., Liu, F. X., & Lei, C. L. (2011). Wolbachia screening in spiders and assessment of horizontal transmission between predator and prey. Neotropical Entomology, 40(2), 164–169.
- Yun, Y. L., Yang, Q. W., Wang, Y. F., Peng, Y., & Jiao, X. G. (2013). The removal and influence of Wolbachia on the reproductive and fitness in Hylyphantes graminicola. Acta Phytophylacica Sinica, 40(2), 145–148.
- Zhang, Y. K., Yang, K., Zhu, Y. X., & Hong, X. Y. (2018). Symbiont-conferred reproduction and fitness benefits can favour their host occurrence. Ecology and Evolution, 8(3), 1626–1633. https://doi.org/10.1002/ece3.3784
- Zhao, J. Z. (1993). Spiders in the cotton fields in China (pp. 169–172). Wuhan, China: Wuhan Publishing House.
- Zhou, W. H., Zuo, L., Gao, J., Yun, Y. L., Chen, J., Zhang, Z. T., & Peng, Y. (2015). Effects of the elevated CO2 on the contents of nutrient and the specific activities of enzymes of Pardosa astrigera. Acta Arachnologica Sinica, 24, 122–125.
10.1111/1755-6724.12308_73 Google Scholar
- Zug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6), e38544. https://doi.org/10.1371/journal.pone.0038544
- Zuo, L., Chen, C., Qi, L., Liu, F. X., Yun, Y. L., & Peng, Y. (2015). Impact of elevated CO2 on growth, development, and reproduction of the wolf spider, Pardosa astrigera (Araneae: Lycosidae). The Journal of Arachnology, 43(1), 86–89.