Predictive direct power control with phase-locked loop technique of three-level neutral point clamped inverter based shunt active power filter for power quality improvement
Corresponding Author
Naamane Debdouche
Laboratory of Electrical Constantine LEC, Department of Electrical Engineering, Brothers Mentouri University, Constantine, Algeria
Correspondence
Naamane Debdouche, Laboratory of Electrical Constantine LEC, Department of Electrical Engineering, Brothers Mentouri University, Ain El-bey, Constantine, 25000, Algeria.
Email: [email protected]
Search for more papers by this authorHabib Benbouhenni
Faculty of Engineering and Architecture, Department of Electrical & Electronics Engineering, Nisantasi University, Istanbul, Turkey
Search for more papers by this authorBrahim Deffaf
Laboratory of Renewable Energies Mastering, Department of Electrical Engineering, Faculty of Technology, University of Bejaia, Bejaia, Algeria
Search for more papers by this authorGuessabi Anwar
Laboratory of Automatics of Setif (LAS), Department of Electrical Engineering, Ferhat Abbas University of Setif1, Setif, Algeria
Search for more papers by this authorLaid Zarour
Laboratory of Electrical Constantine LEC, Department of Electrical Engineering, Brothers Mentouri University, Constantine, Algeria
Search for more papers by this authorCorresponding Author
Naamane Debdouche
Laboratory of Electrical Constantine LEC, Department of Electrical Engineering, Brothers Mentouri University, Constantine, Algeria
Correspondence
Naamane Debdouche, Laboratory of Electrical Constantine LEC, Department of Electrical Engineering, Brothers Mentouri University, Ain El-bey, Constantine, 25000, Algeria.
Email: [email protected]
Search for more papers by this authorHabib Benbouhenni
Faculty of Engineering and Architecture, Department of Electrical & Electronics Engineering, Nisantasi University, Istanbul, Turkey
Search for more papers by this authorBrahim Deffaf
Laboratory of Renewable Energies Mastering, Department of Electrical Engineering, Faculty of Technology, University of Bejaia, Bejaia, Algeria
Search for more papers by this authorGuessabi Anwar
Laboratory of Automatics of Setif (LAS), Department of Electrical Engineering, Ferhat Abbas University of Setif1, Setif, Algeria
Search for more papers by this authorLaid Zarour
Laboratory of Electrical Constantine LEC, Department of Electrical Engineering, Brothers Mentouri University, Constantine, Algeria
Search for more papers by this authorFunding information: The authors declare no funding.
Summary
In this study, an improved anti-windup proportional-integral predictive direct power control strategy with a phase-locked loop (PLL) is proposed and applied to a three-level shunt active power filter (SAPF) neutral point clamped (NPC) inverter using space vector modulation (SVM) technique. The SAPF has to ensure sinusoidal waveforms and unity power factor in the grid side, by eliminating harmonic currents and compensating reactive power of the nonlinear loads. Active and reactive powers as well as the DC bus voltage controls are performed using anti-windup proportional and integral actions with a predictive algorithm, without a need for an exhaustive mathematical model. The control law is modulated using the SVM technique allowing fixed switching frequency and low power ripples. The performances of the suggested control have been verified through an electronic STM32F407 card under diverse and severe conditions. The obtained results confirmed the expected objectives in terms of current and voltage quality, robustness, and dynamic response.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1Lam HS, Yuan H, Tan S-C, Mi CC, Pou J, Hui SYR. Bidirectional AC–DC modular multilevel converter with electric spring functions for stabilizing renewable AC power grid at the distribution voltage level. IEEE J Emerging Selected Topics Power Electron. 2022; 10(6): 7589-7600. doi:10.1109/JESTPE.2022.3173809
- 2Yu Y, Reihs D, Wagh S, et al. Data-driven study of low voltage distribution grid behaviour with increasing electric vehicle penetration. IEEE Access. 2022; 10: 6053-6070. doi:10.1109/ACCESS.2021.3140162
- 3Liu H, Bu F, Huang W, Xu H, Degano M, Gerada C. Control-winding direct power control strategy for five-phase dual-stator winding induction generator DC generating system. IEEE Trans Transport Electrific. 2020; 6(1): 73-82. doi:10.1109/TTE.2019.2962635
- 4Xu Z, Zhao L. Error-based gain-varying finite-time command filtered Backstepping control for nonlinear systems with disturbances. IEEE Trans Circuits Syst II: Express Briefs. 2022; 69(6): 2917-2921. doi:10.1109/TCSII.2022.3147856
- 5Tripathi AN, Rajawat A. An accurate and quick ANN-based system-level dynamic power estimation model using LLVM IR profiling for FPGA designs. IEEE Embedded Syst Lett. 2020; 12(2): 58-61. doi:10.1109/LES.2019.2935052
- 6Benbouhenni H, Bizon N. A synergetic sliding mode controller applied to direct field-oriented control of induction generator-based variable speed dual-rotor wind turbines. Energies. 2021; 14(15): 1-17. doi:10.3390/en14154437
- 7Rani RS, Reddy GP, Prasad SS. Performance Analysis of ANFIS based Five-level SAPF for Power Quality Improvement. In: 2021 IEEE international women in engineering (WIE) conference on electrical and computer engineering (WIECON-ECE), Dhaka, Bangladesh; 2021: 176-179. doi:10.1109/WIECON-ECE54711.2021.9829709
10.1109/WIECON?ECE54711.2021.9829709 Google Scholar
- 8Kumar R, Om Bansal H. Shunt active power filter: current status of control techniques and its integration to renewable energy sources. Sustain Cities Soc. 2018; 42: 574-592. doi:10.1016/j.scs.2018.07.002
- 9Xun Jin J, Wang J, Yang RH, et al. A superconducting magnetic energy storage with dual functions of active filtering and power fluctuation suppression for photovoltaic microgrid. J Energy Storage. 2021; 38:102508. doi:10.1016/j.est.2021.102508
- 10Umadevi A, Lakshminarasimman L, Sakthivel A. Optimal design of shunt active power filter for mitigation of interharmonics in grid tied photovoltaic system. Electr Pow Syst res. 2023; 220:109232. doi:10.1016/j.epsr.2023.109232
- 11Tareen WU, Mekhilef S. Transformer-less 3P3W SAPF (three-phase three-wire shunt active power filter) with line-interactive UPS (uninterruptible power supply) and battery energy storage stage. Energy. 2016; 109: 525-536. doi:10.1016/j.energy.2016.05.005
- 12Karthikeyan M, Sharmilee K, Balasubramaniam PM, et al. Design and implementation of ANN-based SAPF approach for current harmonics mitigation in industrial power systems. Microprocessors Microsyst. 2020; 77:103194. doi:10.1016/j.micpro.2020.103194
- 13Boopathi R, Indragandhi V, et al. Electron Energy. 2023; 5:100222. doi:10.1016/j.prime.2023.100222
10.1016/j.prime.2023.100222 Google Scholar
- 14Çelik D, Ahmed H, Meral ME. Kalman filter-based super-twisting sliding mode control of shunt active power filter for electric vehicle Charging Station applications. IEEE Trans Power Deliv. 2023; 38(2): 1097-1107. doi:10.1109/TPWRD.2022.3206267
- 15Çelik D. Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. Int J Electric Power Energy Syst. 2022; 136:107564. doi:10.1016/j.ijepes.2021.107564
- 16Çelik D, Emin Meral M. A novel control strategy for grid connected distributed generation system to maximize power delivery capability. Energy. 2019; 186:115850. doi:10.1016/j.energy.2019.115850
- 17Chamat NM, Bhandare VS, Diwan SP, Jamadade S. Instantaneous reactive power theory for real time control of three-phase shunt Active Power Filter (SAPF). In: 2014 international conference on circuits, power and computing technologies [ICCPCT-2014], Nagercoil, India; 2014: 792-796. doi:10.1109/ICCPCT.2014.7054981
10.1109/ICCPCT.2014.7054981 Google Scholar
- 18Sahadev S, Manju B. Performance analysis of SRF based SAPF with PI and FUZZY controllers. In: 2015 international conference on Control Communication & Computing India (ICCC), Trivandrum, India; 2015: 260-264. doi:10.1109/ICCC.2015.7432902
10.1109/ICCC.2015.7432902 Google Scholar
- 19Hashim HF, Omar R, Rasheed M. Design and analysis of a three phase series active power filter (SAPF) based on hysteresis controller. In: 4th IET clean energy and technology conference (CEAT 2016), Kuala Lumpur, Malaysia; 2016: 1-5. doi:10.1049/cp.2016.1310
10.1049/cp.2016.1310 Google Scholar
- 20Dubey AK, Mishra JP, Kumar A. Modified CCF based shunt active power filter operation with dead-band elimination for effective harmonic and unbalance compensation in 3-phase 3-wire system. IEEE Trans Power Deliv. 2022; 37(3): 2131-2142. doi:10.1109/TPWRD.2021.3104828
- 21Xu A, Dai K, Chen X, Peng L, Zhang Y, Dai Z. Parallel resonance detection and selective compensation control for SAPF with square-wave current active injection. IEEE Trans Ind Electron. 2017; 64(10): 8066-8078. doi:10.1109/TIE.2017.2696461
- 22Xu Z, Zheng X, Lin T, Yao J, Ioinovici A. Switched-capacitor multi-level inverter with equal distribution of the capacitors discharging phases. Chin J Electric Eng. 2020; 6(4): 42-52. doi:10.23919/CJEE.2020.000029
10.23919/CJEE.2020.000029 Google Scholar
- 23Dyanamina G, Kakodia SK. Adaptive neuro fuzzy inference system based decoupled control for neutral point clamped multi level inverter fed induction motor drive. Chin J Electric Eng. 2021; 7(2): 70-82. doi:10.23919/CJEE.2021.000017
10.23919/CJEE.2021.000017 Google Scholar
- 24Liang X, He J. Load model for medium voltage cascaded H-bridge multi-level inverter drive systems. IEEE Power Energy Technol Syst J. 2016; 3(1): 13-23. doi:10.1109/JPETS.2015.2508785
10.1109/JPETS.2015.2508785 Google Scholar
- 25Dhal RK, Roy T. A comparative study between different multi level inverter topologies for different types of bus clamping PWM techniques using Six Region Selection Algorithm. In: Michael Faraday IET International Summit 2015, Kolkata; 2015: 392-398. doi:10.1049/cp.2015.1664
10.1049/cp.2015.1664 Google Scholar
- 26Shravani C, Veluri S. Reduction of Harmonic Content for Power Electronic Applications using Diode-Clamped-Multi Level Inverters. In: 2020 IEEE-HYDCON, Hyderabad, India; 2020: 1-5. doi:10.1109/HYDCON48903.2020.9242887
10.1109/HYDCON48903.2020.9242887 Google Scholar
- 27Nallamekala KK, Sivakumar K. A fault-tolerant dual three-level inverter configuration for multipole induction motor drive with reduced torque ripple. IEEE Trans Ind Electron. 2016; 63(3): 1450-1457. doi:10.1109/TIE.2015.2495281
- 28Shi Z, Wang W, Huang Y, Li P, Dong L. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control. CSEE J Power Energy Syst. 2022; 8(1): 95-104. doi:10.17775/CSEEJPES.2019.01470
- 29Boulanouar SA, Kaddouri AM, Kouzou A, et al. Multifunctional control technique for grid-tied hybrid distributed generation system taking into account power quality issues. Energies. 2023; 16(18): 6565. doi:10.3390/en16186565
- 30Urrea-Quintero J-H, Muñoz-Galeano N, López-Lezama JM. Robust control of shunt active power filters: a dynamical model-based approach with verified controllability. Energies. 2020; 13(23): 6253. doi:10.3390/en13236253
- 31Zhang C, Cao C, Chen R, Jiang J. Three-leg quasi-Z-source inverter with input ripple suppression for renewable energy application. Energies. 2023; 16(11): 4393. doi:10.3390/en16114393
- 32Fares B, Ahmed TS, Idir H. APF applied on PV conversion chain network using FLC. Eng Proc. 2023; 29(1):17. doi:10.3390/engproc2023029017
10.3390/engproc2023029017 Google Scholar
- 33Batista EA, de Brito MAG, Siqueira JC, et al. A multifunctional smart meter using ANN-PSO flux estimation and harmonic active compensation with fuzzy voltage regulation. Sensors. 2021; 21(12): 4154. doi:10.3390/s21124154
- 34Chankaya M, Hussain I, Ahmad A, Malik H, Alotaibi MA. Stability analysis of chaotic Grey-wolf optimized grid-tied PV-hybrid storage system during dynamic conditions. Electronics. 2022; 11(4): 567. doi:10.3390/electronics11040567
- 35Xiao L, Sattarov RR, Liu P, Lin C. Intelligent fault-tolerant control for AC/DC hybrid power system of more electric aircraft. Aerospace. 2022; 9(4):4. doi:10.3390/aerospace9010004
- 36Kumar R, Bansal HO, Kumar D. Improving power quality and load profile using PV-battery-SAPF system with metaheuristic tuning and its HIL validation. Int Trans Electric Energy Syst. 2020; 30(5):e12335. doi:10.1002/2050-7038.12335
- 37Kumar R, Bansal HO. Real-time implementation of adaptive PV-integrated SAPF to enhance power quality. Int Trans Electric Energy Syst. 2019;e12004. doi:10.1002/2050-7038.12004
- 38Gali V, Gupta N, Gupta RA. Experimental investigations on multitudinal sliding mode controller-based interleaved shunt APF to mitigate shoot-through and PQ problems under distorted supply voltage conditions. Int Trans Electric Energy Syst. 2018; 29(1):e2701. doi:10.1002/etep.2701
- 39Muneer V, Bhattacharya A. Eight-switch CHB-based three-level three-phase shunt active power filter. IET Power Electron. 2020; 13(16): 3511-3521. doi:10.1049/iet-pel.2020.0235
- 40Deffaf B, Farid H, Benbouhenni H, Medjmadj S, Debdouche N. Synergetic control for three-level voltage source inverter-based shunt active power filter to improve power quality. Energy Rep. 2023; 10: 1013-1027. doi:10.1016/j.egyr.2023.07.051
- 41Debdouche N, Zarour L, Benbouhenni H, Mehazzem F, Deffaf B. Robust integral backstepping control microgrid connected photovoltaic system with battery energy storage through multi-functional voltage source inverter using direct power control SVM strategies. Energy Rep. 2023; 10: 565-580. doi:10.1016/j.egyr.2023.07.012
- 42Dubey AK, Mishra JP, Kumar A. Comparative analysis of ROGI based shunt active power filter under current fed and voltage fed type non-linear loading condition. IFAC-PapersOnLine. 2022; 55(1): 156-161. doi:10.1016/j.ifacol.2022.04.026
10.1016/j.ifacol.2022.04.026 Google Scholar
- 43Panda AK, Penthia T. Design and modeling of SMES based SAPF for pulsed power load demands. Int J Electric Power Energy Syst. 2017; 92: 114-124. doi:10.1016/j.ijepes.2017.04.011
- 44Garanayak P, Panda G, Ray PK. Harmonic estimation using RLS algorithm and elimination with improved current control technique based SAPF in a distribution network. Int J Electric Power Energy Syst. 2015; 73: 209-217. doi:10.1016/j.ijepes.2015.04.023
- 45Chebabhi A, Fellah MK, Kessal A, Benkhoris MF. Comparative study of reference currents and DC bus voltage control for three-phase four-wire four-leg SAPF to compensate harmonics and reactive power with 3D SVM. ISA Trans. 2015; 57: 360-372. doi:10.1016/j.isatra.2015.01.011
- 46Deshpande V, Modi P, Sant AV. Analysis of Levenberg Marquardt - ANN based reference current generation for control of shunt active power filter. Mater Today: Proc. 2022; 62(13): 7104-7108. doi:10.1016/j.matpr.2022.02.030
10.1016/j.matpr.2022.02.030 Google Scholar
- 47Echalih S, Abouloifa A, Lachkar I, Guerrero JM, Hekss Z, Giri F. Hybrid automaton-fuzzy control of single phase dual buck half bridge shunt active power filter for shoot through elimination and power quality improvement. Int J Electric Power Energy Syst. 2021; 131:106986. doi:10.1016/j.ijepes.2021.106986
- 48Toumi T, Allali A, Meftouhi A, Abdelkhalek O, Benabdelkader A, Denai M. Robust control of series active power filters for power quality enhancement in distribution grids: simulation and experimental validation. ISA Trans. 2020; 107: 350-359. doi:10.1016/j.isatra.2020.07.024
- 49Hajbani V, Zakipour A, Salimi M. A novel Lyapunov-based robust controller design for LCL-type shunt active power filters using adaptive sliding-mode backstepping approach. E-Prime - Adv Electr Eng Electron Energy. 2023; 5:100200. doi:10.1016/j.prime.2023.100200
10.1016/j.prime.2023.100200 Google Scholar
- 50Taghzaoui C, Abouloifa A, Tighazouane B, et al. Advanced control of single-phase shunt active power filter based on flying capacitor multicell converter. IFAC-PapersOnLine. 2022; 55(12): 55-60. doi:10.1016/j.ifacol.2022.07.288
10.1016/j.ifacol.2022.07.288 Google Scholar
- 51Echalih S, Abouloifa A, Hekss Z, Lachkar I, El Aroudi A, Giri F. Advanced nonlinear control of single phase shunt active power filter based on full bridge dual Buck converter. IFAC-PapersOnLine. 2022; 55(12): 659-664. doi:10.1016/j.ifacol.2022.07.387
10.1016/j.ifacol.2022.07.387 Google Scholar
- 52Jayakumar V, Chokkalingam B, Munda JL. A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters. IEEE Access. 2021; 9: 112104-112144. doi:10.1109/ACCESS.2021.3100346
- 53Benbouhenni H, Bizon N, Colak I. A brief review of space vector modulation (SVM) methods and a new SVM technique based on the minimum and maximum of the three-phase voltages. Iran J Electric Electron Eng. 2022; 18(3): 1-18. doi:10.22068/IJEEE.18.3.2358
10.22068/IJEEE.18.3.2358 Google Scholar
- 54Benbouhenni H. High order sliding mode direct power control of a DFIG supplied by a five-level NSVPWM strategy for the wind energy conversion system. TECNICA ITALIANA-Italian journal of engineering. Science. 2021; 65(1). doi:10.11591/ijape.v9.i1.pp36-47
10.11591/ijape.v9.i1.pp36?47 Google Scholar
- 55Han D, Peng FZ, Dwari S. Advanced PWM techniques for multi-level inverters with a multi-level active CM noise filter. IEEE J Emerging Selected Topics Power Electron. 2022; 10(6): 6865-6879. doi:10.1109/JESTPE.2021.3128274
- 56Benbouhenni H, Boudjema Z, Belaidi A. Power control of DFIG in WECS using DPC and NDPC-NPWM methods. Math Modell Eng Problems. 2020; 7(2): 223-236. doi:10.18280/mmep.070208
10.18280/mmep.070208 Google Scholar
- 57Benbouhenni H, Boudjema Z, Belaidi A. Higher control scheme using neural second order sliding mode and ANFIS-SVM strategy for a DFIG-based wind turbine. Int J Adv Telecommun Electrotech Signals Syst. 2019; 8(2): 17-28. doi:10.11601/ijates.v8i2.263
10.11601/ijates.v8i2.263 Google Scholar
- 58Benbouhenni H, Driss A, Lemdani S. Indirect active and reactive powers control of doubly fed induction generator fed by three-level adaptive-network-based fuzzy inference system – pulse width modulation converter with a robust method based on super twisting algorithms. Electric Eng Electromech. 2021; 2021(4): 8-17. doi:10.20998/2074-272X.2021.4.04
10.20998/2074-272X.2021.3.02 Google Scholar
- 59Benbouhenni H. A comparison study between fuzzy PWM and SVM inverter in NSMC control of stator active and reactive power control of a DFIG based wind turbine systems. Int J Appl Power Eng (IJAPE). 2019; 8(1): 78-92. doi:10.11591/ijape.v8.i1.pp78-92
10.11591/ijape.v8.i1.pp78-92 Google Scholar
- 60Suresh K, Parimalasundar E. "a modified multi level inverter with inverted SPWM control," in IEEE. Can J Elect Comput Eng. 2022; 45(2): 99-104. doi:10.1109/ICJECE.2022.3150367
10.1109/ICJECE.2022.3150367 Google Scholar
- 61Jacob B, Baiju MR. A new space vector modulation scheme for multilevel inverters which directly vector quantize the reference space vector. IEEE Trans Ind Electron. 2015; 62(1): 88-95. doi:10.1109/TIE.2014.2326998
- 62Habib B, Boudjema Z, Belaidi A. Comparison study between NPWM and NSVPWM strategy in FSMC control of stator reactive and active powers control of a DFIG-based wind turbine system. Int J Appl Power Eng (IJAPE). 2020; 9(2): 159-172. doi:10.11591/ijape.v9.i2.pp159-172
10.11591/ijape.v9.i2.pp159-172 Google Scholar
- 63Habib B, Boudjema Z, Bizon N, Thounthong P, Takorabet N. Direct power control based on modified sliding mode controller for a variable-speed multi-rotor wind turbine system using PWM strategy. Energies. 2022; 15(10):3689. doi:10.3390/en15103689
- 64Shang L, Hu J. Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions. IEEE Trans Energy Convers. 2012; 27(2): 362-373. doi:10.1109/TEC.2011.2180389
- 65Habib B. 24-sectors DPC-FNN method of DFIG integrated to dual-rotor wind turbine. Int J Appl Power Eng (IJAPE). 2021; 10(4).
- 66Wang X, Sun D, Zhu ZQ. Resonant-based Backstepping direct power control strategy for DFIG under both balanced and unbalanced grid conditions. IEEE Trans Ind Appl. 2017; 53(5): 4821-4830. doi:10.1109/TIA.2017.2700280
- 67Bouafia A, Gaubert J-P, Krim F. Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans Power Electron. 2010; 25(1): 228-236. doi:10.1109/TPEL.2009.2028731
- 68Benbouhenni H. A direct power control of the doubly fed induction generator based on the three-level NSVPWM technique. Int J Smart Grid. 2019; 3(4).
- 69Jlassi I, Cardoso AJM. Fault-tolerant Back-to-Back converter for direct-drive PMSG wind turbines using direct torque and power control techniques. IEEE Trans Power Electron. 2019; 34(11): 11215-11227. doi:10.1109/TPEL.2019.2897541
- 70Ahmed M, Harbi I, Kennel R, Abdelrahem M. Direct power control based on dead-beat function and extended Kalman filter for PV systems. J Mod Power Syst Clean Energy. 2023; 11(3): 863-872. doi:10.35833/MPCE.2021.000793
- 71Benbouhenni H, Colak I, Bizon N, Mazare AG, Thounthong P. Direct vector control using feedback PI controllers of a DPAG supplied by a two-level PWM inverter for a multi-rotor wind turbine system. Arab J Sci Eng. 2023; 48(7): 15177-15193. doi:10.1007/s13369-023-08035-w
- 72Ejlali A, Khaburi DA. Power quality improvement using nonlinear-load compensation capability of variable speed DFIG based on DPC-SVM method. In: The 5th annual international power electronics, drive systems and technologies conference (PEDSTC 2014), Tehran, Iran; 2014: 280-284. doi:10.1109/PEDSTC.2014.6799386
10.1109/PEDSTC.2014.6799386 Google Scholar
- 73Huang J, Zhang A, Zhang H, et al. Improved direct power control for rectifier based on fuzzy sliding mode. IEEE Trans Control Syst Technol. 2014; 22(3): 1174-1180. doi:10.1109/TCST.2013.2273368
- 74Sun D, Wang X, Nian H, Zhu ZQ. A sliding-mode direct power control strategy for DFIG under both balanced and unbalanced grid conditions using extended active power. IEEE Trans Power Electron. 2018; 33(2): 1313-1322. doi:10.1109/TPEL.2017.2686980
- 75Benbouhenni H. Direct power control of a DFIG fed by a seven-level inverter using SVM strategy. Int J Smart Grid. 2019; 3(2): 54-62.
- 76Benbouhenni H. A new SVM scheme based on ANN controller of a PMSG controlled by DPC strategy. Majlesi J Energy Manag. 2018; 7(1): 11-19.
- 77Benbouhenni H. Two-level DPC strategy based on FNN algorithm of the DFIG-DRWT systems using two-level hysteresis controllers for reactive and active powers. Renew Energy res Appl (RERA). 2021; 2(3): 137-146. doi:10.22044/rera.2021.10694.1053
10.22044/rera.2021.10694.1053 Google Scholar
- 78Pichan M, Rastegar H, Monfared M. Fuzzy-based direct power control of doubly fed induction generator-based wind energy conversion systems. In: 2012 2nd international eConference on computer and knowledge engineering (ICCKE), Mashhad, Iran; 2012: 66-70. doi:10.1109/ICCKE.2012.6395354
10.1109/ICCKE.2012.6395354 Google Scholar
- 79Benbouhenni H. Application of DPC and DPC-GA to the dual-rotor wind turbine system with DFIG. Int J Robot Automat. 2021; 10(3): 224-234. doi:10.11591/ijra.v10i3.pp224-234
10.11591/ijra.v10i3.pp224?234 Google Scholar
- 80Bengourina MR, Rahli M, Slami S, Hassaine L. PSO based direct power control for a multifunctional grid connected photovoltaic system. Int J Power Electron Drive Syst (IJPEDS). 2018; 9(2): 610-621. doi:10.11591/ijpeds.v9.i2.pp610-621
10.11591/ijpeds.v9.i2.pp610-621 Google Scholar
- 81Osman AM, Alsokhiry F. Sliding mode control for grid integration of wind power system based on direct drive PMSG. IEEE Access. 2022; 10: 26567-26579. doi:10.1109/ACCESS.2022.3157311
10.1109/ACCESS.2022.3157311 Google Scholar
- 82Bossoufi B, Karim M, Taoussi M, et al. Rooted tree optimization for the Backstepping power control of a doubly fed induction generator wind turbine: dSPACE implementation. IEEE Access. 2021; 9: 26512-26522. doi:10.1109/ACCESS.2021.3057123
- 83Benbouhenni H. Synergetic control theory scheme for asynchronous generator based dual-rotor wind power. J Electric Eng Electron Control Comput Sci. 2021; 7(3): 19-28.
- 84Benbouhenni H. Direct active and reactive powers command with third-order sliding mode theory for DFIG-based dual-rotor wind power systems. Int J Natural Eng Sci. 2021; 15(1): 17-34.
- 85Habib B, Gasmi H. Comparative study of synergetic controller with super twisting algorithm for rotor side inverter of DFIG. Int J Smart Grid-ijSmartGrid. 2022; 6(4): 144-156. doi:10.20508/ijsmartgrid.v6i4.265.g228
10.20508/ijsmartgrid.v6i4.265.g228 Google Scholar
- 86Benbouhenni H, Bizon N, Colak I, Thounthong P, Takorabet N. Simplified super twisting sliding mode approaches of the double-powered induction generator-based multi-rotor wind turbine system. Sustainability. 2022; 14(9): 5014. doi:10.3390/su14095014
- 87Benbouhenni H, Mehedi F, Soufiane L. New direct power synergetic-SMC technique based PWM for DFIG integrated to a variable speed dual-rotor wind power. Automatika. 2022; 63(4): 718-731. doi:10.1080/00051144.2022.2065801
- 88Benbouhenni H, Lemdani S. Combining synergetic control and super twisting algorithm to reduce the active power undulations of doubly fed induction generator for dual-rotor wind turbine system. Electric Eng Electromech. 2021; 2021(3): 8-17. doi:10.20998/2074-272X.2021.3.02
10.20998/2074-272X.2021.3.02 Google Scholar
- 89Echiheb F, Ihedrane Y, Bossoufi B, et al. Robust sliding-Backstepping mode control of a wind system based on the DFIG generator. Sci Rep. 2022; 12(1):11782. doi:10.1038/s41598-022-15960-7
- 90Benbouhenni H, Colak I, Bizon N. Application of genetic algorithm and terminal sliding surface to improve the effectiveness of the proportional–integral controller for the direct power control of the induction generator power system. Eng Appl Artif Intel. 2023; 125:106681. doi:10.1016/j.engappai.2023.106681
- 91Naamane D, Laid Z, Fateh M. Power quality improvement based on third-order sliding mode direct power control of microgrid-connected photovoltaic system with battery storage and nonlinear load. Iran J Sci Technol Trans Electr Eng. 2023; 47(4): 1473-1490. doi:10.1007/s40998-023-00627-4
- 92Pu Y-F. Fractional-order Euler-Lagrange equation for fractional-order Variational method: a necessary condition for fractional-order fixed boundary optimization problems in signal processing and image processing. IEEE Access. 2016; 4: 10110-10135. doi:10.1109/ACCESS.2016.2636159
- 93Benbouhenni H, Bizon N, Colak I, Thounthong P, Takorabet N. Application of fractional-order PI controllers and neuro-fuzzy PWM technique to multi-rotor wind turbine systems. Electronics. 2022; 11(9): 1340. doi:10.3390/electronics11091340
- 94Zhang Z, Fang H, Gao F, Rodriguez J, Kennel R. Multiple vector model predictive power control for grid-tiedwind turbine system with enhanced steady-state control performance. IEEE Trans Ind Electron. 2017; 64(8): 6287-6298. doi:10.1109/TIE.2017.2682000
- 95Krama A, Zellouma L, Benaissa A, Rabhi B, Bouzidi M, Benkhoris MF. Design and experimental investigation of predictive direct power control of three-phase shunt active filter with space vector modulation using anti-windup PI controller optimized by PSO. Arab J Sci Eng. 2019; 44(8): 6741-6755. doi:10.1007/s13369-018-3611-6
- 96Ferreira SC, Foster JGL, Gonzatti RB, Pereira RR, Pinheiro GG, Guimarães BPB. Online adaptive parameter estimation of a finite control set model predictive controlled hybrid active power filter. Energies. 2023; 16(9): 3830. doi:10.3390/en16093830
- 97Yaramasu V, Rivera M, Wu B, Rodriguez J. Model predictive current control of two-level four-leg inverters—part I: concept, algorithm, and simulation analysis. IEEE Trans Power Electron. 2013; 28(7): 3459-3468. doi:10.1109/TPEL.2012.2227509
- 98Young HA, Perez MA, Rodriguez J. Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans Ind Electron. 2016; 63(5): 3100-3107. doi:10.1109/TIE.2016.2515072
- 99Wang Y, Wang C, Zeng W, Bai F. Multifactorial prediction errors analysis and a feedback self-correction on model predictive control for the three-phase inverter. IEEE Trans Ind Electron. 2019; 66(5): 3647-3654. doi:10.1109/TIE.2018.2853588
- 100Wang Y, Liu F, Chen S, Shen G, Wang QG. Prediction errors analysis and correction on FCS-MPC for the cascaded H-bridge multilevel inverter. IEEE Trans Ind Electron. 2022. [Google Scholar] [CrossRef]; 69(8): 8264-8273. doi:10.1109/TIE.2021.3104594
- 101Liu X, Qiu L, Rodríguez J, et al. Data-driven neural predictors-based robust MPC for power converters. IEEE Trans Power Electron. 2022; 37(10): 11650-11661. doi:10.1109/TPEL.2022.3171100
- 102Heydari R, Young H, Rafiee Z, Flores-Bahamonde F, Savaghebi M, Rodriguez J. Model-Free Predictive Current Control of a Voltage Source Inverter based on Identification Algorithm. In: Proceedings of the IECON 2020 the 46th annual conference of the IEEE industrial electronics society, Singapore, 18–21 October 2020: 3065-3070.
- 103Li Z, Wang B, Wang P, Han Y, Garcia C, Rodriguez J. Dynamic Forgetting Factor Based Bias-Compensated RLS Model Free Predictive Current Control for Voltage Source Inverter. In: Proceedings of the 2022 IEEE 17th conference on industrial electronics and applications (ICIEA), Chengdu, China, 16–19 December 2022: 195-200.
- 104Zhang Y, Liu X, Li H, Zhang Z. A model independent predictive control of PMSG wind turbine systems with a new mechanism to update variables. Energies. 2023; 16(9): 3764. doi:10.3390/en16093764
- 105Jard T, Snaiki R. Real-time repositioning of floating wind turbines using model predictive control for position and power regulation. Wind. 2023; 3(2): 131-150. doi:10.3390/wind3020009
10.3390/wind3020009 Google Scholar
- 106Reusser CA, Herrera Hernández R, Lie TT. Hybrid vehicle CO2 emissions reduction strategy based on model predictive control. Electronics. 2023; 12(6): 1474. doi:10.3390/electronics12061474
- 107Abid A, Bakeer A, Zellouma L, Bouzidi M, Lashab A, Rabhi B. Low computational burden predictive direct power control of quasi Z-source inverter for grid-tied PV applications. Sustainability. 2023; 15(5): 4153. doi:10.3390/su15054153
- 108Bhatti MZA, Siddique A, Aslam W, Atiq S, Khan HS. Improved model predictive direct power control for parallel distributed generation in grid-tied microgrids. Energies. 2023; 16(3): 1441. doi:10.3390/en16031441
- 109Bejarano G, Lemos JM, Rico-Azagra J, Rubio FR, Ortega MG. Energy Management of Refrigeration Systems with thermal energy storage based on non-linear model predictive control. Mathematics. 2022; 10(17): 3167. doi:10.3390/math10173167
- 110Kakouche K, Rekioua T, Mezani S, et al. Model predictive direct torque control and fuzzy logic energy Management for Multi Power Source Electric Vehicles. Sensors. 2022; 22(15): 5669. doi:10.3390/s22155669
- 111Sung G-M, Tung L-F, Huang C-C, Huang H-Y. Modified predictive direct torque control ASIC with multistage hysteresis and fuzzy controller for a three-phase induction motor drive. Electronics. 2022; 11(11): 1802. doi:10.3390/electronics11111802
- 112Boudjema Z, Benbouhenni H, Bouhani A, Chabni F. DSPACE implementation of a neural SVPWM technique for a two level voltage source inverter. Iran J Electric Electron Eng. 2021; 17(3): 1793.
- 113Debdouche N, Chebabhi A, Ouchen S, Zarour L. Direct Power Control of three- Level SAPF with Space Vector Modulation for Power Quality improvement. In: 2022 19th international multi-conference on systems, Signals & Devices (SSD), Sétif, Algeria; 2022: 103-108. doi:10.1109/SSD54932.2022.9955653
10.1109/SSD54932.2022.9955653 Google Scholar
- 114Sharma K, Sharma VK. Single Phase Modeling and Harmonics Compensation of Standalone PV+SOFC System with SAPF. In: 2020 international conference on electronics and sustainable communication systems (ICESC), Coimbatore, India. Vol. 2020: 979-983. doi:10.1109/ICESC48915.2020.9155669
10.1109/ICESC48915.2020.9155669 Google Scholar
- 115Rath A, Srungavarapu G. New Model Predictive & Algorithm DPC based Shunt Active Power Filters (SAPFs). In: 2021 1st international conference on power electronics and energy (ICPEE), Bhubaneswar, India; 2021: 1-6. doi:10.1109/ICPEE50452.2021.9358550
10.1109/ICPEE50452.2021.9358550 Google Scholar
- 116Zorig A, Barkat S, Sangwongwanich A. Neutral point voltage balancing control based on adjusting application times of redundant vectors for three-level NPC inverter. IEEE J Emerging Selected Topics Power Electron. 2022; 10(5): 5604-5613. doi:10.1109/JESTPE.2022.3186927
- 117Madishetti S, Singh B, Bhuvaneswari G. Three-level NPC-inverter-based SVM-VCIMD with feedforward active PFC rectifier for enhanced AC mains power quality. IEEE Trans Ind Appl. 2016; 52(2): 1865-1873. doi:10.1109/TIA.2015.2496906
- 118Rachana B, Sri Devi J, Usha Rani V, Raveendhra D. Performance and analysis of three phase SAPF under different control algorithms for power quality problems. In: 2022 IEEE 2nd international conference on sustainable energy and future electric transportation (SeFeT), Hyderabad, India; 2022: 1-8. doi:10.1109/SeFeT55524.2022.9909033
10.1109/SeFeT55524.2022.9909033 Google Scholar
- 119Mohammadi J, Vaez-Zadeh S, Afsharnia S, Daryabeigi E. A combined vector and direct power control for DFIG-based wind turbines. IEEE Trans Sustain Energy. 2014; 5(3): 767-775. doi:10.1109/TSTE.2014.2301675
- 120Chebabhi A, Abdelhalim K, Fellah FMK, Fayssal A. Self tuning filter and fuzzy logic control of shunt active power filter for eliminates the current harmonics constraints under unbalanced source voltages and loads conditions. J Power Technol. 2018; 98(1): 1-19.
- 121Chebabhi A, Fellah MK, Kessal A, Benkhoris MF. Four leg DSTATCOM based on synchronous reference frame theory with enhanced phase locked loop for compensating a four wire distribution network under unbalanced PCC voltages and loads. J Power Technol. 2016; 96(1): 15-26.
- 122Li B, Li L, Li L, Jin S. Multidimensional space-vector PWM algorithm using branch space voltage vector. IEEE Trans Power Electron. 2016; 31(12): 8517-8527. doi:10.1109/TPEL.2016.2520952
- 123Dalessandro L, Round SD, Drofenik U, Kolar JW. Discontinuous space-vector modulation for three-level PWM rectifiers. IEEE Trans Power Electron. 2008; 23(2): 530-542. doi:10.1109/TPEL.2007.915160
- 124Koganti S, Koganti KJ, Salkuti SR. Design of multi-objective-based artificial intelligence controller for wind/battery-connected shunt active power filter. Algorithms. 2022; 15(8): 256. doi:10.3390/a15080256
- 125Asadi Y, Eskandari M, Mansouri M, Chaharmahali S, Moradi MH, Tahriri MS. Adaptive neural network for a stabilizing shunt active power filter in distorted weak grids. Appl Sci. 2022; 12(16): 8060. doi:10.3390/app12168060
- 126Gao H, Zhang W, Ren M, Liu X. Three-level active power filter based on model predictive control. Electronics. 2022; 11(9): 1291. doi:10.3390/electronics11091291
- 127Musa S, Mohd Radzi MA, Hizam H, Abdul Wahab NI, Hoon Y, Mohd Zainuri MAA. Modified synchronous reference frame based shunt active power filter with fuzzy logic control pulse width modulation inverter. Energies. 2017; 10(6): 758. doi:10.3390/en10060758
- 128Alali MAE, Shtessel YB, Barbot JP, Di Gennaro S. Sensor effects in LCL-type grid-connected shunt active filters control using higher-order sliding mode control techniques. Sensors. 2022; 22(19): 7516. doi:10.3390/s22197516
- 129Deffaf B, Debdouche N, Benbouhenni H, Hamoudi F, Bizon N. A new control for improving the power quality generated by a three-level T-type inverter. Electronics. 2023; 12(9): 2117. doi:10.3390/electronics12092117
- 130Debdouche N, Deffaf B, Benbouhenni H, Laid Z, Mosaad MI. Direct power control for three-level multifunctional voltage source inverter of PV systems using a simplified super-twisting algorithm. Energies. 2023; 16(10): 4103. doi:10.3390/en16104103
- 131Ouchen S, Steinhart H, Benbouzid M, Blaabjerg F. Robust DPC-SVM control strategy for shunt active power filter based on H∞ regulators. Int J Electric Power Energy Syst. 2020; 117:105699. doi:10.1016/j.ijepes.2019.105699
- 132Naamane D, Laid Z, Fateh M. Power quality improvement based on third-order sliding mode direct power control of microgrid-connected photovoltaic system with battery storage and nonlinear load. Iran J Sci Technol Trans Electric Eng. 2023; 1-18.
- 133V M, Bhattacharya A. Peak power demand management by using SMC-controlled three-level CHB-based three-wire and four-wire SAPF. IEEE Trans Industr Inform. 2021; 17(8): 5270-5281. doi:10.1109/TII.2020.3026704
- 134Benbouhenni H, Bounadja E, Gasmi H, Bizon N, Colak I. A new PD(1+PI) direct power controller for the variable-speed multi-rotor wind power system driven doubly-fed asynchronous generator. Energy Rep. 2022; 8: 15584-15594. doi:10.1016/j.egyr.2022.11.136
- 135Zhang D, Li H, Collins EG. Digital anti-windup PI controllers for variable-speed motor drives using FPGA and stochastic theory. IEEE Trans Power Electron. 2006; 21(5): 1496-1501. doi:10.1109/TPEL.2006.882342
- 136Sarsembayev B, Suleimenov K, Do TD. High order disturbance observer based PI-PI control system with tracking anti-windup technique for improvement of transient performance of PMSM. IEEE Access. 2021; 9: 66323-66334. doi:10.1109/ACCESS.2021.3074661