Pyridoxine-dependent epilepsy: Current perspectives and questions for future research
Curtis R. Coughlin II
Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Sidney M. Gospe Jr.
Departments of Neurology and Pediatrics, University of Washington, Seattle, Washington, USA
Department of Pediatrics, Duke University, Durham, North Carolina, USA
Correspondence Sidney M. Gospe, Jr., Departments of Neurology and Pediatrics, University of Washington, Seattle, WA, USA.
Email: [email protected]
Contribution: Conceptualization, Project administration, Writing - original draft, Writing - review & editing
Search for more papers by this authorCurtis R. Coughlin II
Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Sidney M. Gospe Jr.
Departments of Neurology and Pediatrics, University of Washington, Seattle, Washington, USA
Department of Pediatrics, Duke University, Durham, North Carolina, USA
Correspondence Sidney M. Gospe, Jr., Departments of Neurology and Pediatrics, University of Washington, Seattle, WA, USA.
Email: [email protected]
Contribution: Conceptualization, Project administration, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Pyridoxine-dependent epilepsy (PDE) was historically defined by a dramatic clinical response to a trial of pyridoxine and the re-emergence of seizures after withdrawal of pyridoxine. Research conducted over the last seven decades has revealed that the phenotype of PDE results from multiple genetic disorders, and the most common disorder, PDE-ALDH7A1, is caused by a deficiency of an enzyme involved in lysine metabolism. PDE-ALDH7A1 is characterized by more than epilepsy, as many patients have abnormalities of brain development, and most patients have intellectual and developmental disability. Treatment aimed at the underlying metabolic defect, in addition to pyridoxine supplementation, has improved clinical outcomes. Recently discovered biomarkers and genetic testing allow for the diagnosis of PDE-ALDH7A1 without the need of a pyridoxine trial and hold the promise for newborn screening. Despite these many advances, PDE-ALDH7A1 remains a clinical and biochemical conundrum. The increasing use of model systems and an international collaboration of clinician-scientists are among the reasons to be optimistic that these questions will be answered in the near future and that the clinical outcomes and quality of life will continue to improve for patients with PDE-ALDH7A1.
Conflicts of Interest
The authors declare no conflict of interest.
References
- 1Hunt AD, Stokes J, McCrory WW, Stroud HH. Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine. Pediatrics. 1954; 13(2): 140-145.
- 2Basura GJ, Hagland SP, Wiltse AM, Gospe Jr. SM. Clinical features and the management of pyridoxine-dependent and pyridoxine-responsive seizures: review of 63 North American cases submitted to a patient registry. Eur J Pediatr. 2009; 168(6): 697-704.
- 3Coughlin II CR, Tseng LA, Abdenur JE, et al. Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 2021; 44(1): 178-192.
- 4van Karnebeek CDM, Tiebout SA, Niermeijer J, et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr Neurol. 2016; 59: 6-12.
- 5Gospe Jr. SM. Current perspectives on pyridoxine-dependent seizures. J Pediatr. 1998; 132(6): 919-923.
- 6Bok LA, Maurits NM, Willemsen MA, et al. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia. 2010; 51(12): 2406-2411.
- 7Knapik JJ, Farina EK, Fulgoni VL, Lieberman HR. Clinically-diagnosed vitamin deficiencies and disorders in the entire United States military population, 1997-2015. Nutr J. 2021; 20(1): 55.
- 8Aring CD, Spies TD. A critical review: vitamin B deficiency and nervous disease. J Neurol Neurosurg Psychiatry. 1939; 2(4): 335-360.
- 9Coursin DB. Convulsive seizures in infants with pyridoxine-deficient diet. JAMA. 1954; 154(5): 406-408.
- 10Molony CJ. Convulsions in young infants as a result of pyridoxine (vitamin B6) deficiency. JAMA. 1954; 154(5): 405-406.
- 11Dart RC, Goldfrank LR, Erstad BL, et al. Expert consensus guidelines for stocking of antidotes in hospitals that provide emergency care. Ann Emerg Med. 2018; 71(3): 314-325.
- 12Baxter P. Epidemiology of pyridoxine dependent and pyridoxine responsive seizures in the UK. Arch Dis Child. 1999; 81(5): 431-433.
- 13Reid ES, Williams H, Stabej PLQ, et al. Seizures due to a KCNQ2 mutation: treatment with vitamin B6. JIMD Rep. 2016; 27: 79-84.
- 14Riikonen R, Mankinen K, Gaily E. Long-term outcome in pyridoxine-responsive infantile epilepsy. Eur J Paediatr Neurol. 2015; 19(6): 647-651.
- 15Mills PB, Surtees RAH, Champion MP, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Gen. 2005; 14(8): 1077-1086.
- 16Alghamdi M, Bashiri FA, Abdelhakim M, et al. Phenotypic and molecular spectrum of pyridoxamine-5′-phosphate oxidase deficiency: a scoping review of 87 cases of pyridoxamine-5′-phosphate oxidase deficiency. Clin Genet. 2021; 99(1): 99-110.
- 17Darin N, Reid E, Prunetti L, et al. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am J Hum Genet. 2016; 99(6): 1325-1337.
- 18Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M, et al. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain. 2019; 142(3): 542-559.
- 19Mills PB, Struys E, Jakobs C, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med. 2006; 12(3): 307-309.
- 20Bennett CL, Chen Y, Hahn S, Glass IA, Gospe Jr. SM. Prevalence of ALDH7A1 mutations in 18 North American pyridoxine-dependent seizure (PDS) patients. Epilepsia. 2009; 50(5): 1167-1175.
- 21Mills PB, Footitt EJ, Mills KA, et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain. 2010; 133(Pt 7): 2148-2159.
- 22Scharer G, Brocker C, Vasiliou V, et al. The genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy due to mutations in ALDH7A1. J Inherit Metab Dis. 2010; 33(5): 571-581.
- 23Coughlin II CR, Swanson MA, Spector E, et al. The genotypic spectrum of ALDH7A1 mutations resulting in pyridoxine dependent epilepsy: a common epileptic encephalopathy. J Inherit Metab Dis. 2019; 42(2): 353-361.
- 24Coughlin II CR, Tseng LA, Bok LA, et al. Association between lysine reduction therapies and cognitive outcomes in patients with pyridoxine-dependent epilepsy. Neurology. 2022; 99(23): e2627-e2636.
- 25Tseng LA, Abdenur JE, Andrews A, et al. Timing of therapy and neurodevelopmental outcomes in 18 families with pyridoxine-dependent epilepsy. Mol Gen Metab. 2022; 135(4): 350-356.
- 26Mercimek-Mahmutoglu S, Horvath GA, Coulter-Mackie M, et al. Profound neonatal hypoglycemia and lactic acidosis caused by pyridoxine-dependent epilepsy. Pediatrics. 2012; 129(5): e1368-e1372.
- 27Dowa Y, Shiihara T, Akiyama T, et al. A case of pyridoxine-dependent epilepsy with novel ALDH7A1 mutations. Oxf Med Case Reports. 2020; 2020(3): omaa008.
- 28Aquilano G, Linnér A, Ygberg S, Stödberg T, Henckel E. Case report: fatal outcome of pyridoxine-dependent epilepsy presenting as respiratory distress followed by a circulatory collapse. Front Pediatr. 2022; 10:940103.
- 29Schmitt B, Baumgartner M, Mills PB, et al. Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency. Dev Med Child Neurol. 2010; 52(7): e133-e142.
- 30de Rooy RLP, Halbertsma FJ, Struijs EA, et al. Pyridoxine dependent epilepsy: is late onset a predictor for favorable outcome? Eur J Paediatr Neurol. 2018; 22(4): 662-666.
- 31Osman C, Foulds N, Hunt D, Jade Edwards C, Prevett M. Diagnosis of pyridoxine-dependent epilepsy in an adult presenting with recurrent status epilepticus. Epilepsia. 2020; 61(1): e1-e6.
- 32Srinivasaraghavan R, Parameswaran N, Mathis D, Bürer C, Plecko B. Antiquitin deficiency with adolescent onset epilepsy: molecular diagnosis in a mother of affected offsprings. Neuropediatrics. 2018; 49(2): 154-157.
- 33Rankin PM, Harrison S, Chong WK, Boyd S, Aylett SE. Pyridoxine-dependent seizures: a family phenotype that leads to severe cognitive deficits, regardless of treatment regime. Dev Med Child Neurol. 2007; 49(4): 300-305.
- 34Friedman SD, Ishak GE, Poliachik SL, et al. Callosal alterations in pyridoxine-dependent epilepsy. Dev Med Child Neurol. 2014; 56(11): 1106-1110.
- 35Oesch G, Maga AM, Friedman SD, et al. Geometric morphometrics reveal altered corpus callosum shape in pyridoxine-dependent epilepsy. Neurology. 2018; 91(1): e78-e86.
- 36Jansen LA, Hevner RF, Roden WH, et al. Disruption of antiquitin (ALDH7A1) function in astrocytes is associated with neuronal migration defects in pyridoxine-dependent epilepsy. Ann Neurol. 2012; 72: S218-S219.
- 37Marguet F, Barakizou H, Tebani A, et al. Pyridoxine-dependent epilepsy: report on three families with neuropathology. Metab Brain Dis. 2016; 31(6): 1435-1443.
- 38Toldo I, Bonardi CM, Bettella E, et al. Brain malformations associated to Aldh7a1 gene mutations: report of a novel homozygous mutation and literature review. Eur J Paediatr Neurol. 2018; 22(6): 1042-1053.
- 39Navarro-Abia V, Soriano-Ramos M, Núñez-Enamorado N, et al. Hydrocephalus in pyridoxine-dependent epilepsy: new case and literature review. Brain Dev. 2018; 40(4): 348-352.
- 40Yusuf IH, Sandford V, Hildebrand GD. Congenital cataract in a child with pyridoxine-dependent epilepsy. J Am Assoc Pediatr Ophthalmol Strabismus. 2013; 17(3): 315-317.
- 41Haidar Z, Jalkh N, Corbani S, Fawaz A, Chouery E, Mégarbané A. Atypical pyridoxine dependent epilepsy resulting from a new homozygous missense mutation, in ALDH7A1. Seizure. 2018; 57: 32-33.
- 42Cellini B, Montioli R, Oppici E, Astegno A, Borri Voltattorni C. The chaperone role of the pyridoxal 5′-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clin Biochem. 2014; 47(3): 158-165.
- 43Scriver CR. Vitamin B6-dependency and infantile convulsions. Pediatrics. 1960; 26: 62-74.
- 44Gospe Jr. SM, Olin KL, Keen CL. Reduced GABA synthesis in pyridoxine-dependent seizures. The Lancet. 1994; 343(8906): 1133-1134.
- 45Bok LA, Struys E, Willemsen MAAP, Been JV, Jakobs C. Pyridoxine-dependent seizures in Dutch patients: diagnosis by elevated urinary alpha-aminoadipic semialdehyde levels. Arch Dis Child. 2007; 92(8): 687-689.
- 46Plecko B, Stöckler-Ipsiroglu S, Paschke E, Erwa W, Struys EA, Jakobs C. Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy. Ann Neurol. 2000; 48(1): 121-125.
- 47Mills PB, Footitt EJ, Ceyhan S, et al. Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. J Inherit Metab Dis. 2012; 35(6): 1031-1036.
- 48Peduto A, Baumgartner MR, Verhoeven NM, et al. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Gen Metab. 2004; 82(3): 224-230.
- 49Plecko B, Hikel C, Korenke G-C, et al. Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy. Neuropediatrics. 2005; 36(3): 200-205.
- 50Mercimek-Mahmutoglu S, Donner EJ, Siriwardena K. Normal plasma pipecolic acid level in pyridoxine dependent epilepsy due to ALDH7A1 mutations. Mol Gen Metab. 2013; 110(1-2): 197.
- 51Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B6 metabolism. J Inherit Metab Dis. 2019; 42(4): 629-646.
- 52Struys EA, Jakobs C. α-Aminoadipic semialdehyde is the biomarker for pyridoxine-dependent epilepsy caused by α-aminoadipic semialdehyde dehydrogenase deficiency. Mol Gen Metab. 2007; 91(4): 405.
- 53Struys EA, Bok LA, Emal D, Houterman S, Willemsen MA, Jakobs C. The measurement of urinary Δ1-piperideine-6-carboxylate, the alter ego of α-aminoadipic semialdehyde, in Antiquitin deficiency. J Inherit Metab Dis. 2012; 35(5): 909-916.
- 54Sadilkova K, Gospe Jr. SM, Hahn SH. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. J Neurosci Methods. 2009; 184(1): 136-141.
- 55Wempe MF, Kumar A, Kumar V, et al. Identification of a novel biomarker for pyridoxine-dependent epilepsy: implications for newborn screening. J Inherit Metab Dis. 2019; 42(3): 565-574.
- 56Brundidge SP, Gaeta FCA, Hook DJ, Sapino Jr. C, Elander RP, Morin RB. Association of 6-oxo-piperidine-2-carboxylic acid with penicillin V production in Penicillium chrysogenum fermentations. J Antibiot. 1980; 33(11): 1348-1351.
- 57Henriksen CM, Nielsen J, Villadsen J. Cyclization of alpha-aminoadipic acid into the delta-lactam 6-oxo-piperidine-2-carboxylic acid by Penicillium chrysogenum. J Antibiot. 1998; 51(2): 99-106.
- 58Engelke UFH, van Outersterp RE, Merx J, et al. Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine-dependent epilepsy. J Clin Invest. 2021; 131(15):148272.
- 59van Outersterp RE, Engelke UFH, Merx J, et al. Metabolite identification using infrared ion spectroscopy─novel biomarkers for pyridoxine-dependent epilepsy. Anal Chem. 2021; 93(46): 15340-15348.
- 60Coughlin II CR, Tseng LA, van Karnebeek CD. A case for newborn screening for pyridoxine-dependent epilepsy. Mol Case Stud. 2022; 8(2):mcs.a006197.
10.1101/mcs.a006197 Google Scholar
- 61Hess-Homeier DL, Cunniff C, Grinspan ZM. Priorities for newborn screening of genetic epilepsy. Pediatr Neurol. 2019; 101: 83-85.
- 62Jung S, Tran N-TB, Gospe Jr. SM, Hahn SH. Preliminary investigation of the use of newborn dried blood spots for screening pyridoxine-dependent epilepsy by LC-MS/MS. Mol Gen Metab. 2013; 110(3): 237-240.
- 63Mathew EM, Moorkoth S, Lewis L, Rao P. Biomarker profiling for pyridoxine dependent epilepsy in dried blood spots by HILIC-ESI-MS. Int J Anal Chem. 2018; 2018: 1-8.
- 64Stockler S, Plecko B, Gospe Jr. SM, et al. Pyridoxine dependent epilepsy and antiquitin deficiency. Mol Gen Metab. 2011; 104(1-2): 48-60.
- 65van Karnebeek CDM, Stockler-Ipsiroglu S, Jaggumantri S, et al. Lysine-restricted diet as adjunct therapy for pyridoxine-dependent epilepsy: the PDE consortium consensus recommendations. JIMD Rep. 2014; 15: 1-11.
- 66Gül-Mert G, İncecik F, Hergüner MÖ, Ceylaner S, Altunbaşak Ş. Pyridoxine-dependent epilepsy in two Turkish patients in Turkey and review of the literature. Turk J Pediatr. 2015; 57(4): 394-397.
- 67Nam SH, Kwon M-J, Lee J, et al. Clinical and genetic analysis of three Korean children with pyridoxine-dependent epilepsy. Ann Clin Lab Sci. 2012; 42(1): 65-72.
- 68Russell KE, Mulligan SR, Mallory LA. Diagnosis of pyridoxine-dependent seizures in a nineteen-year-old patient. Pediatr Neurol. 2012; 47(2): 141-143.
- 69Yang Z, Yang X, Wu Y, et al. Clinical diagnosis, treatment, and ALDH7A1 mutations in pyridoxine-dependent epilepsy in three Chinese infants. PLoS One. 2014; 9(3):e92803.
- 70Ben Younes T, Kraoua I, Benrhouma H, et al. Pyridoxine-dependent epilepsy: a novel mutation in a Tunisian child. Archives de Pédiatrie. 2017; 24(3): 241-243.
- 71Sudarsanam A, Singh H, Wilcken B, et al. Cirrhosis associated with pyridoxal 5′-phosphate treatment of pyridoxamine 5′-phosphate oxidase deficiency. JIMD Rep. 2014; 17: 67-70.
- 72Raimondi F, Mills P, Clayton PT, Del Giudice E. A preterm neonate with seizures unresponsive to conventional treatment. Case Reports. 2015; 2015:bcr2015209743.
- 73Mohamed-Ahmed AHA, Wilson MP, Albuera M, et al. Quality and stability of extemporaneous pyridoxal phosphate preparations used in the treatment of paediatric epilepsy. J Pharm Pharmacol. 2017; 69(4): 480-488.
- 74 Institute of Medicine (US). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline [Internet]. Washington (DC): National Academies Press (US); 1998. Accessed February 8, 2023.
- 75McLachlan RS, Brown WF. Pyridoxine-dependent epilepsy with iatrogenic sensory neuronopathy. Can J Neurol Sci/J Can des Sci Neurol. 1995; 22(1): 50-51.
- 76Bok LA, Been JV, Struys EA, Jakobs C, Rijper EAM, Willemsen MA. Antenatal treatment in two Dutch families with pyridoxine-dependent seizures. Eur J Pediatr. 2010; 169(3): 297-303.
- 77Baxter P, Griffiths P, Kelly T, Gardner-Medwin D. Pyridoxine-dependent seizures: demographic, clinical, MRI and psychometric features, and effect of dose on intelligence quotient. Dev Med Child Neurol. 1996; 38(11): 998-1006.
- 78Bok LA, Halbertsma FJ, Houterman S, et al. Long-term outcome in pyridoxine-dependent epilepsy. Dev Med Child Neurol. 2012; 54(9): 849-854.
- 79van Karnebeek CDM, Hartmann H, Jaggumantri S, et al. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials. Mol Gen Metab. 2012; 107(3): 335-344.
- 80Stoll J, Wadhwani KC, Smith QR. Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem. 1993; 60(5): 1956-1959.
- 81Hawkins RA, O'Kane RL, Simpson IA, Viña JR. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr. 2006; 136(1 suppl): S218-S226.
- 82O'Kane RL, Viña JR, Simpson I, Zaragozá R, Mokashi A, Hawkins RA. Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. Am J Physiol-Endocrinol Metab. 2006; 291(2): E412-E419.
- 83Mercimek-Mahmutoglu S, Cordeiro D, Cruz V, et al. Novel therapy for pyridoxine dependent epilepsy due to ALDH7A1 genetic defect: L-arginine supplementation alternative to lysine-restricted diet. Eur J Paediatr Neurol. 2014; 18(6): 741-746.
- 84Coughlin II CR, van Karnebeek CDM, Al-Hertani W, et al. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: neurodevelopmental outcome. Mol Gen Metab. 2015; 116(1–2): 35-43.
- 85Baxter P. Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta (BBA). 2003; 1647(1–2): 36-41.
- 86Roberts E, Rothstein M, Baxter CF. Some metabolic studies of gamma-aminobutyric acid. Proc Soc Exp Biol Med. 1958; 97(4): 796-802.
- 87Battaglioli G, Rosen DR, Gospe Jr. SM, Martin DL. Glutamate decarboxylase is not genetically linked to pyridoxine-dependent seizures. Neurology. 2000; 55(2): 309-311.
- 88Minenkova A, Jansen EEW, Cameron J, et al. Is impaired energy production a novel insight into the pathogenesis of pyridoxine-dependent epilepsy due to biallelic variants in ALDH7A1? PLoS One. 2021; 16(9):e0257073.
- 89Wang PJ, Lee WT, Hwu WL, Young C, Yau KIT, Shen YZ. The controversy regarding diagnostic criteria for early myoclonic encephalopathy. Brain Dev. 1998; 20(7): 530-535.
- 90Gazeteci-Tekin H, Demir M, Aktan G, Tekgül H, Gökben S. The case of pyridoxine dependent epilepsy misdiagnosed as non-ketotic hyperglycinemia. Turk J Pediatr. 2019; 61(4): 599-603.
- 91Coene KLM, Kluijtmans LAJ, van der Heeft E, et al. Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J Inherit Metab Dis. 2018; 41(3): 337-353.
- 92Böhm H-O, Yazdani M, Sandås EM, et al. Global metabolomics discovers two novel biomarkers in pyridoxine-dependent epilepsy caused by ALDH7A1 deficiency. Int J Mol Sci. 2022; 23(24):16061.
- 93Crowther LM, Poms M, Zandl-Lang M, et al. Metabolomics analysis of antiquitin deficiency in cultured human cells and plasma: relevance to pyridoxine-dependent epilepsy. J Inherit Metab Dis. 2023; 46(1): 129-142.
- 94Yazdani M, Elgstøen KBP. Is oxidative stress an overlooked player in pyridoxine-dependent epilepsy? A focused review. Seizure. 2021; 91: 369-373.
- 95Chang YF. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem. 1978; 30(2): 347-354.
- 96Chang YF. Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun. 1976; 69(1): 174-180.
- 97Mihalik SJ, Rhead WJ. Species variation in organellar location and activity of L-pipecolic acid oxidation in mammals. J Comp Physiol B. 1991; 160(6): 671-675.
- 98Pena IA, Marques LA, Laranjeira ÂBA, et al. Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Biochim Biophys Acta. 2017; 1863(1): 121-128.
- 99Crowther LM, Mathis D, Poms M, Plecko B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J Inherit Metab Dis. 2019; 42(4): 620-628.
- 100Plecko B, Paul K, Paschke E, et al. Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat. 2007; 28(1): 19-26.
- 101Mills PB, Footitt EJ, Mills KA, et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain. 2010; 133(Pt 7): 2148-2159.
- 102Fong W-P, Cheng CHK, Tang W-K. Antiquitin, a relatively unexplored member in the superfamily of aldehyde dehydrogenases with diversified physiological functions. Cell Mol Life Sci. 2006; 63(24): 2881-2885.
- 103Lu H-J, Chuang C-Y, Chen M-K, et al. The impact of ALDH7A1 variants in oral cancer development and prognosis. Aging. 2022; 14(10): 4556-4571.
- 104Guo Y, Tan L-J, Lei S-F, et al. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet. 2010; 6(1):e1000806.
- 105Copley S. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol. 2003; 7(2): 265-272.
- 106Tawfik OKDS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010; 79: 471-505.
- 107Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis. 2015; 10: 151.
- 108Arican P, Gencpinar P, Kirbiyik O, et al. The clinical and molecular characteristics of molybdenum cofactor deficiency due to MOCS2 mutations. Pediatr Neurol. 2019; 99: 55-59.
- 109Grünewald S. The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta. 2009; 1792(9): 827-834.
- 110Nasr E, Mamak E, Feigenbaum A, Donner EJ, Mercimek-Mahmutoglu S. Long-term treatment outcome of two patients with pyridoxine-dependent epilepsy caused by ALDH7A1 mutations: normal neurocognitive outcome. J Child Neurol. 2015; 30(5): 648-653.
- 111Strijker M, Tseng LA, van Avezaath LK, et al. Cognitive and neurological outcome of patients in the Dutch pyridoxine-dependent epilepsy (PDE-ALDH7A1) cohort, a cross-sectional study. Eur J Paediatr Neurol. 2021; 33: 112-120.
- 112Tseng LA, Teela L, Janssen MC, et al. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) in adulthood: a Dutch pilot study exploring clinical and patient-reported outcomes. Mol Genet Metab Rep. 2022; 31:100853.
- 113Pena IA, Roussel Y, Daniel K, et al. Pyridoxine-dependent epilepsy in zebrafish caused by Aldh7a1 deficiency. Genetics. 2017; 207(4): 1501-1518.
- 114Zabinyakov N, Bullivant G, Cao F, et al. Characterization of the first knock-out aldh7a1 zebrafish model for pyridoxine-dependent epilepsy using CRISPR-Cas9 technology. PLoS One. 2017; 12(10):e0186645.
- 115Babcock HE, Dutta S, Alur RP, et al. aldh7a1 regulates eye and limb development in zebrafish. PLoS One. 2014; 9(7):e101782.
- 116Al-Shekaili HH, Petkau TL, Pena I, et al. A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Hum Mol Gen. 2020; 29(19): 3266-3284.