Adenosine A1 receptors are located predominantly on axons in the rat hippocampal formation
Corresponding Author
Thomas H. Swanson M. D.
Department of Neurology, The Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
Department of Neuroscience Research, The Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
NC3–163, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44129Search for more papers by this authorJudith A. Drazba
Department of Neuroscience Research, The Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
Search for more papers by this authorScott A. Rivkees
Wells Center for Pediatric Research, Departments of Pediatric Endocrinology, Biochemistry, Molecular Biology, and Neurobiology, Riley Hospital, Indiana University, Indianapolis, Indiana 46202–5225
Search for more papers by this authorCorresponding Author
Thomas H. Swanson M. D.
Department of Neurology, The Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
Department of Neuroscience Research, The Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
NC3–163, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44129Search for more papers by this authorJudith A. Drazba
Department of Neuroscience Research, The Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
Search for more papers by this authorScott A. Rivkees
Wells Center for Pediatric Research, Departments of Pediatric Endocrinology, Biochemistry, Molecular Biology, and Neurobiology, Riley Hospital, Indiana University, Indianapolis, Indiana 46202–5225
Search for more papers by this authorAbstract
The nucleoside adenosine exerts potent biological effects via specific receptors, including the inhibitory Al adenosine receptor (A1AR). In the hippocampus A1ARs play an important role in regulating neuronal activity. However, the cellular sites of hippocampal A1ARs are undefined. Using in situ hybridization, receptor autoradiography, and single- and double-label immunocytochemistry techniques, we have characterized the cellular sites of A1AR expression in the rat hippocampus. In situ hybridization and receptor autoradiography studies revealed strikingly different patterns of labeling. In situ hybridization studies revealed heaviest labeling of cell bodies in the granular layer of the dentate gyrus and the pyramidal layers of Ammon's horn. In contrast, using [3H] we observed heavy specific labeling over the neuropil in the dentate hilus stratum moleculare, stratum lacunosum-inoleculare, stratum radiatum, and stratum oriens, and little labeling over cell bodies. Using single-label immunocytochemistry, A1AR immunoreactivity was found to be heaviest over fibers in regions corresponding with heavy [3H] labeling. Double-label florescent confocal microscopy was then used to determine the identity of labeled fibers. A1AR immunoreactivity was found to co-localize with SMI-31 that labels axons, but not with MAP2a, b that labels cell bodies and dendrites, orwith synaptophysin that labels synapses. These data identify axons as the predominant site of A1AR expression in hippocampus. Activation of A1ARs may be a powerful mechanism by which adenosine alters axonal transmission to inhibit neurotransmitter release. © 1995 Wiley-Liss, Inc.
Literature Cited
- Arvidsson, U., M. Riedl, S. Chakrabarti, J-H. Lee, A. H. Nakano, R. J. Doado, H. H. Loh, P.-Y. Law, M. W. Wessendorf, and R. Elde (1995) Distribution and targeting of a m-opioid receptor (MORI) in brain and spinal cord. J. Neurusci 15 (5A): 3328–3341.
- Barraco, R. A., T. N. Swanson, J. W. Phillis, and R. F. Berman (1984) Anticonvulsant effects of adenosine analogs on amygdala-kindled seizures in rats. Neurosci. Lett. 46: 317–322.
- Bernhardt, R., and A. Matus (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between the dendritic and axonal cyctoskeletons. J. Comp. Neurol. 226: 203–221.
- Binder, L. I., A. Frankfurter, and L. I. Rebhun (1986) Differential localization of MAP-2 and thu in mammalian neurons in situ. Ann. N. Y. Acad. Sd. 466: 145–166.
- Caceres, A., L. I. Binder, M. R. Payne, P. Bender, L. Rebhun, and O. Steward (1984) DIfferential subcellular localization of tubulin and the microtubuleassocinted protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J. Neurosci. 4: 394–410.
- Corradetti, R., G. Lo Conte, F. Morone, M. Beatrice Passani, and G. Pepeu (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur. J. Pharmacol. 04: 19–26.
- Deckert, J., and M. B. Jorgensen (1988) Evidence for pre- and poatsynaptic localization of adenoelne Al receptors in the CAl region of rat hippocampus: a quantitative autoradiographic study. Brain Res. 446: 161–164.
- Dolphin, A. C., and E. R. Archer (1983) An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci. Lett. 43: 49–54.
- Dolphin, A. C., S. R. Forda, and R. H. Scott (1988) Calcium-dependent cur rents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J. Physiol. 373: 47–61.
- Dragunow, M., G. V. Goddard, and R. Laverty (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26: 480–487.
- Dragunow, M., K. Murphy, R. A. Leslie, and H. A. Robertson (1988) Localization of adenosine Al-receptors to the terminals of the perforant path. Brain Res. 462: 252–257.
- Dunwiddie, T. V. and B. J. Hoffor (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br. J. Pharmacol. 69: 59–68.
- Dunwiddie, T. V., and B. B. Fredholm (1989) Adenosine Al receptors inhibit adenylate cyclase activity and neurotransmitter release and hyperpolarize pyramidal neurons in rat hippocampus. J. Pharmacol. Exp. Ther. 249: 31–37.
- During, M. J., and D. D. Spencer (1992) Adenosine: A potential mediator of seizure arrest and postictal refractoriness. Ann. Neurol. 32: 818–824.
- Fredholm, B. B., T. V. Dunwiddie, B. Bergman, and K. Lindatror (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res. 295: 127–136.
- Fredholm, B. R., and T. V. Dunwiddie (1988) How does adonosine inhibit transmitter release? TIPS 9: 130–134.
- Green, R. D. (1991) Adenosinc receptors, adenylat cyclase; relationships to pharmacological actions of adenosine. In J. W. Phillis (ed): Adenosine and Adenine Nucleotides as Regulators of Cellular Function. Boca Raton, FL: CRC Press, pp. 45–54.
- Hertz, L. (1991) Nuclcoside transport in cells: kinetics and inhibitor effects. In J. W. Phillis (ed): Adenosine and Adenine Nucleotides as Rigulators of Cellular Function. Boca Raton, FL: CRC Press, pp. 85–107.
- Hollins, C., and T. W. Stone (1980) Adenosine inhibition of gammaaminobutyric acid release from slices of rat cerebral cortex. Ber. J. Pharmacol. 69: 107–112.
-
Jarvis, M. F., and
M. Williams
(1990)
Adenosine in central nervous system function. In
M. Williams (ed):
Adenosine and Adenosine Receptors.
Humana:
Totowa, NJ,
pp. 423–474.
10.1007/978-1-4612-4504-9_11 Google Scholar
-
Johansson, B., and
B. B. Fredholm
(1995)
Further characterization of the binding of the adenosine receptor agonist 3HCGS 21680 to rat brain using autoradiography.
Neuropharmacology
34
(4):
393–403.
10.1016/0028-3908(95)00009-U Google Scholar
- Kornberg, A. (1979) Aspects of DNA replication. Cold Spring Harbor Symp. Quant. Biol. 43: 1–9.
- Lee, V. M., M. J. Carden, and J. Q. Trojanoweki (1987) Monoclonal antibodies distinguish several differentially phosphorylated Etates of the two largest rat neurofilament subunits (NP-H and NF'-M) and demonstrate their existence in the normal nervous system of adult rats. J. Neurosci. 7: 3474–3488.
- Linden, J. (1994) Purinergic Systems. In G. J. Seige, B. W. Agranoff, B. W. Albers, and P. B. Molinoff (eds): Basic Neurochemistry. New York: Raven Press, pp. 401–416.
- Lloyd, H. G. E., K. Lindström, and S. B. Fredholm (1993) Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem. Int. 23: 173–185.
- Ludin, B., and A. Matus (1993) The neuronal cytoskeleton and its role in axonal and dendritic plasticity. Hippocampus 3: 61–72.
- MacDonald, R. L., J. H. Skerritt, and M. A. Werz (1986) Adenosine agonists reduce voltage-dependent calcium conductance of mouse sensory neurones in cell culture. J. Physiol. 370: 75–90.
- Matus, A., and B. Riederer (1986) Microtubule-associated proteins in the developing brain. Ann. N. Y. Acad. Sci. 466: 167–179.
- Miller, D. C., M. Koslow, G. N. Budzilovich, and D. E. Burstein (1990) Synaptophysin: A sensitive and specific marker for ganglion cells in central nervous system neoplasms. Hum. Pathol. 21: 271–276.
- Morris, M. E., G. A. Di Costanzo, S. Fox, and R. Werman (1983) Depolarizing action of GABA (γ-amminohutyric acid) on myelinated fibers of peripheral nerves. Brain Res. 278: 117–126.
- Mosqueda-Garcia, R., C.-J. Tseng, M. Appalsamy, C. Beck, and D. Robertson (1991) Cardiovascular excitatory effects of adenosine in the nucleus of the solitary tract. Hypertension 18: 494–502.
- Nicoll, R. A. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241: 545–551.
- Nishimura, S., M. Mohri, Y. Okada, and M. Mori (1990) Excitatory and inhibitory effects of adenosine on the neurotransmission in the hippocampal slices of guinea pig. Brain Res. 525: 165–169.
- Okada, Y., and Y. Kuroda (1980) Inhibitory action of adenosine and adenosine analogs on neurotransmission in the olfactory cortex slice of guinea pig-structure activity relationships. Eur. J. Clin. Pharmacol. 61: 137–146.
- Okada, Y., and S. Owaza (1980) Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro. Eur. J. Pharmacol. 68: 483–492.
- Okada, Y., S. Nishimura, and T. Miyamoto (1990) Excitatory effect of adenosine on neurotransmission in the slices of superior colficulus and hippocampus of guinea pig. Neurosci. Lett. 120: 205–208.
- Okada, Y., T. Sakurai, and M. Mori (1992) Excitatory effect of adenosine on neurotransmission is due to increase of transmitter release in the hippocampal slices. Neurosci. Lett. 142: 233–236.
- Phillis, J. W., and P. H. Wu (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16: 187–239.
- Phillis, J. W., and P. H. Wu (1983) Roles of Adenosine and Adenine Nudeotides in the Central Nervous System. New York: Raven Press.
- Poli, A., R. Lucchi, M. Vibio, and O. Barnabei (1991) Adenosine and glutamate modulate each other's release from rat hippocampal synaptosomes. J. Neurochem. 57: 298–306.
- Reppert, S. M., D. R. Weaver, J. H. Stehle, and S. A. Rivkees (1991) Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol. Endocrinol. 5: 1037–1048.
- Ribeiro, J. A., and A. M. Sebastiao (1984) Enhancement of tetrodotoxin induced axonal blockade by adenosine, adenosine analogs, dibutyryl cyclic AMP and methylxanthines in the frog sciatic nerve. Ber. J. Pharmacol. 83: 485–492.
-
Ribeiro, J. A., and
A. M. Sebastiao
(1987)
Adenosine, Cyclic AMP and Nerve Conduction, In
F. Gerlach and
B. F. Becker (eds):
Topics and Perspectives in Adenosine Research,
Berlin:
Springer-Verlag.
pp. 559–573.
10.1007/978-3-642-45619-0_48 Google Scholar
- Ribeiro, J. A. (1991) Purinergic regulation of transmitter release. In J. W. Phillis (ed): Adenosine and Adenine Nucleotides as Regulators of Cellular Function. Boca Raton, FL: CRC Press, pp. 155–167.
- Rivkees, S. A. (1994) Localization and characterization of adenosine receptor expression in rat testis. Endocrinology 136: 2307–2313.
- Rivkees, S. A. (1995) The ontogeny of cardiac and neural Al adenosine receptor expression in rats. Dev. Brain Res. (in press).
- Rivkees, S. A., S. L. Price, and F. C. Zhou (1995) Immunohistochemical detection of Al adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res. 677: 193–203.
- Rosen, J. S., and R. F. Berman (1985) Prolonged postictal depression in amygdala-kindled rats by the adenosine analog, L-phenylisopropyladeno sine, Exp. Neurol. 90: 549–557.
- Ross, A. H., M. B. Lachyankar, D. K. Poluha, and R. Loy (1994) Axonal transport of the trkA high-affinity NGF receptor. Prog. Brain Res. 103: 15–21.
- Rudolphi, K. A. (1991) Manipulation of purinergic tone ass mechanism for controlling ischemic brain damage. In J. W. Phillis (ed): Adenosine and Adenine Nucleotides as Regulators of Cellular Function. Boca Raton, FL: CRC Press, pp. 423–436.
- Schubert, P., and U. Mitzdorf (1979) Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices. Brain Res. 172: 186–190.
- Segal, M. (1982) Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus. Eur. J. Pharmacol. 79: 193–199.
- Siggina, G. E., and P. Schubert (1981) Adenosine depression of hippocampal neurons in vitro: an Intracellular study of dose-dependent actions on synaptic and membrane potentials. Neuroeci. Lett. 23: 55–60.
- Smith, T. W., S. Nikulasson, U. De Girolami, and L. J. Ge Gennaro (1993) Immunohiatochemistry of synapsin I and synaptophysin in human nervous system and neuroendocrine tumors. Clin. Neuroputhol. 12: 335–342.
- Snyder, S. H., J. J. Katims, Z. Annau, R. F. Bruns, and J. W. Daly (1981) Adenosinc receptors and behavioral actions of methylxanthines. Proc. Nat Acad. Sci. U.S.A. 78: 3280–3284.
- Sternberger, L. A., and N. H. Sterngerger (1983) Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurosis ments in situ. Proc. Natl. Acad. Sci. U.S.A. 80: 6126–6130.
- Stiles, G. L. (1992) Adenosine receptors. J. Biol. Chem. 267: 6451–6454.
- Stone, T. W. (1991) Adenosine as a neuroactive compound in the central nervous system. In J. W. Phillis (ed): Adenosine and Adenine Nucleotide as Regulators of Cellular Function. Boca Eaton, FL: CRC Press, pp. 329–338.
- Storm-Mathisen, J., and L. L. Iversen (1979) Uptake of [3H] glutamic acid in excitatory nerve indings: light and electronmicroscopic observations in the hippocampal formation of the rat. Neuroscience 4: 1237–1253.
- Stryer, L. (1981) Metabolism: Basic concepts and design. In L. Stryer (ed): Biochemistry. San Francisco: W. H. Freeman and Co., pp. 235–254.
- Swanson, T. H., and L. M. Masukawa (1981) N6–Cyclopentyladenosine, a stable adenosine analog, exerts concentration dependent effects on evoked granule cell activity. Soc. Neurosci. Abstr. 17 (2): 1548.
- Thompson, S. M., H. L. Haas, and B. H. Gahwller (1992) Comparison of the actions pf adenosine at pre- and postsynaptic receptors in the rat hippocumpus in vitro. J. Physiol. 451: 347–363.
- Vale, R. D., O. Banker, and Z. W. Hall (1992) The neuronal cytoskeleton. In Z. W. Hall (ed): An introduction To Molecular Neurobiology Sunderland, MA: Sincuer Associates Inc., pp. 247–280.
- Weber, E. G., C. P. Jones, M. J. Lohse, and J. M. Palacios (1990) Autoradio graphic visualization of A1 adenosine receptors in rat brain with [3H]8– cyclopentyl-1,3–dipropylxsnthine. J. Neurochem. 64: 1344–1353.
- White, T. D., and K. Hoehn (1991) Adenosine and adenine nucisotides in tissues and perfusates. In J. W. Phillis (ed): Adenosin and Adenine Nucleotides as Regulators of Cell Function. Boca Eaton, FL: CRC Press, pp. 109–118.
- Wiedenmann, B., W. W. Franks, C. Kuhn, R. Moll, and V. E. Gould (1986) Snaptophysin: a marker protein for neuroendocrine cells and neoplssms. Proc. Natl. Acad. Sci, U.S.A. 83: 3500–3504.