Opioid peptide gene expression in rat trigeminal nucleus caudalis neurons: Normal distribution and effects of trigeminal deafferentation
Toshikazu Nishimori
Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Gene Neuroscience Unit, ARC, NIDA, Baltimore, Maryland 21224
Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Search for more papers by this authorMichael A. Moskowitz
Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Departments of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Search for more papers by this authorGeorge R. Uhl
Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Gene Neuroscience Unit, ARC, NIDA, Baltimore, Maryland 21224
Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Search for more papers by this authorToshikazu Nishimori
Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Gene Neuroscience Unit, ARC, NIDA, Baltimore, Maryland 21224
Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Search for more papers by this authorMichael A. Moskowitz
Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Departments of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Search for more papers by this authorGeorge R. Uhl
Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
Gene Neuroscience Unit, ARC, NIDA, Baltimore, Maryland 21224
Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Search for more papers by this authorAbstract
Preproenkephalin (preproenkephalin A) and preprodynorphin (preproenkephalin B) are the opioid peptide genes expressed in neurons of the nucleus caudalis of the trigeminal nuclear complex. We have used recently developed techniques for quantitative in situ hybridization to identify the neurons in laminae I and II of the nucleus caudalis that display the mRNA products of each of these genes. The specificity of these hybridization patterns is supported by several biochemical features, and by qualitative and quantitative parallels with previous immunohistochemical results. In animals killed 4 days after unilateral lesions of the trigeminal ganglion, neuronal expression of both preproenkephalin and preprodynorphin is altered in the nucleus caudalis. Decreases in preproenkephalin mRNA are due to a decline in the number of neurons that appear to express this gene. Conversely, preprodynorphin mRNA increases by adding a significant population of expressing neurons. These deafferentation-induced changes in gene expression may provide clues to the role of primary afferent information in modulating the functions of nucleus caudalis neurons containing opioid peptides.
Literature Cited
- Akil, H., S. J. Watson, E. Young, M. E. Lewis, H. Khachaturian, and J. M. Walker (1984) Endogenous opioids: Biology and function. Annu. Rev. Neurosci. 7: 223–255
- Aronin, U., M. DiFiglia, A. S. Liotta, and J. B. Martin (1981) Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J. Neurosci. 1: 561–567.
- Baldino, F., Jr., and L. G. Davis (1986) Glucocorticoid regulation of vasopressin messenger RNA. In G. R. Uhl (ed.): In Situ Hybridization in Brain. New York: Plenum Press, pp. 253–256.
- Basbaum, A. I., and H. L. Fields (1984) Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7: 309–338.
- Botticelli, L. J., B. M. Cox, and A. Goldstein (1981) Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc. Natl. Acad. Sci. USA 78: 783–7786.
- Charnay, Y., P. Christian, F. Dray, and P.-M. Dubois (1984) Distribution of enkephalin in human fetus and infant spinal cord: An immunofluorescence study. J. Comp. Neurol. 223: 415–423.
- Cho, H. J., and A. I. Basbaum (1987) Light and electron microscopic analysis of immunoreactive dynorphin in the spinal dorsal horn of the rat. Soc. Neurosci. Abstr. 14: 295.
- Civelli, O., J. Douglas, A. Goldstein, and E. Herbert (1985) Sequence and expression of the rat prodynorphin gene. Proc. Natl. Acad. Sci. USA 82: 4291–4295.
- Cowan, W. M., J. W. Fawcett, D. D. M. O'Leary, and B. B. Stanfield (1984) Regressive events in neurogenesis. Science 225: 1258–1265.
- Cruz, L., and A. Basbaum (1985) Multiple opioid peptides and the modulation of pain: Immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat. J. Comp. Neurol. 240: 331–348.
- Del Fiacco, M., and A. C. Cuello (1980) Substance P- and enkephalin-containing neurones in the rat trigeminal system. Neuroscience. 5: 803–815.
- Dickenson, A. H., A. F. Sullivan, R. Knox, J. M. Zajac, and B. P. Roques (1987) Opioid receptor subtypes in the rat spinal cord: Electrophysiological studies with μ and d opioid receptor agonists in the control of nociception. Brain Res. 413 36–44.
- Di Giulio, A. M., P. Mantegazza, M. Dona, and A. Gorio (1985) Peripheral nerve lesions cause simultaneous alterations of substance P and enkephalin levels in the spinal cord. Brain Res. 342: 405–408.
- Dubner, R., and G. J. Bennett (1983) Spinal and trigeminal mechanisms of nociception. Annu. Rev. Neurosci. 6: 381–418.
- Faccini, E., H. Uzumaki, S. Govoni, C. Missale, P. F. Spano, V. Covelli, and M. Trabucchi (1984) Afferent fibers mediate the increase of met-enkephalin elicited in rat spinal cord by localized pain. Pain 18: 25–31.
- Fallon, J. H., and F. M. Leslie (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J. Comp. Neurol. 249: 293–336.
- Finley, J. C. W., J. L. Maderdrut, and P. Petrusz (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat. J. Comp. Neurol. 198: 541–565.
- Glazer, E. J., and A. I. Basbaum (1981) Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation. J. Comp. Neurol. 196: 377–389.
- Glazer, E. J., and A. I. Basbaum (1983) Opioid neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neuroscience. 10: 357–376.
- Gobel, S. (1978a) Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis). J. Comp. Neurol. 180: 375–394.
- Gobel, S. (1978b) Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J. Comp. Neurol. 180: 395–414.
- Habener, J. F. (1981) Principles of peptide-hormone biosynthesis. In J. B. Martin, S. Reichlin, and K. L. Black (eds): Neurosecretion and Brain Peptides, Vol. 28. New York: Raven Press, pp. 21–34.
- Harlan, R. E., B. D. Shivers, G. J. Romano, R. D. Howells, and D. W. Pfaff (1987) Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J. Comp. Neurol. 58: 159–184.
- Heumann, R., S. Korsching, J. Scott, and H. Thoenen (1984) Physiology of nerve growth factor. EMBO J. 3: 3183–3189.
- Horikawa, S., T. Takai, M. Toyosato, H. Takahashi, M. Noda, H. Kakidani, T. Kubo, T. Hirose, S. Inayama, H. Hayashida, T. Miyata, and S. Numa (1983) Isolation and structural organization of the human preproenkaphalin B gene. Nature 306: 611–614.
- Kakidani, H., Y. Furutani, H. Takahashi, M. Noda, Y Motimoto, T. Hirose, M. Asai, S. Inayama, S. Nakanishi, and S. Numa (1982) Cloning and sequence analysis of cDNA for procine ß-neo-endorphin/dynorphin precursor. Nature 298: 245–249.
- Knyihar, E., I. Laslo, and S. Tornyos (1974) Fine structure and fluoride resistant acid phosphatase activity of electron dense sinusoid terminals in the substantia gelatinosa rolandi of the rat after dorsal root transection. Exp. Brain. Res. 19: 529–544.
- Levi-Montalcini, R., and P. U. Angeletti (1968) Nerve growth factor. Physiol. Rev. 48: 534–569.
- Merchenthaler, I., J. L. Maderdrut, R. A. Altschuler, and P. Petrusz (1986) Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience 17: 325–348.
- Millan, M. J. (1986) Multiple opioid systems and pain. Pain 27: 303–347.
- Nagy, J. I., and S. P. Hunt (1982) Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience 7: 89–97.
- Noda, M., Y. Furutani, H. Takahashi, M. Toyosato, T. Hirose, S. Inayama, S. Nakanishi, and S. Numa (1982a) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295: 202–206.
- Noda, M., Y. Teranishi, H. Takahashi, M. Toyosato, M. Notake, S. Nakanishi, and S. Numa (1982b) Isolation and structural organization of the human preproenkephalin gene. Nature 297: 431–434.
- Piercey, M. F., R. A. Lahti, L. A. Schroeder, F. J. Einspahr, and C. Barsuhn (1982) U-50488H, a pure kappa receptor agonist with spinal analgesic loci in the mouse. Life Sci. 31: 1197–1200.
- Pittius, C. W., N. Kley, J. P. Loeffler, and V. Hollt (1985) Quantitation of proenkephalin A messenger RNA in bovine brain pituitary and adrenal medulla: Correlation between mRNA and peptide levels. EMBO J. 4: 1257–1260.
- Porreca, F., H. I. Mosberg, R. Hurst, V. J. Hruby, and T. F. Burks (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J. Pharmacol. Exp. Ther. 230: 341–348.
- Rogers, A. W. (1973) Techniques of Autoradiography. New York: Elsevier Press.
- Rosen, H., J. Douglas, and E. Herbert (1984) Isolation and characterization of the rat proenkephalin gene. J. Biol. Chem. 259: 14309–14313.
- Ruda, M. A., M. J. Iadarola, L. V. Cohen, and W. S. Young III (1988) In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc. Natl. Acad. Sci. USA 85: 622–626.
- Shelton, D. L., and L. F. Reichardt (1984) Expression of the ß-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc. Natl. Acad. Sci. USA 81: 7951–7955.
- Sumal, K. K., V. M. Pickel, R. J. Miller, and D. J. Reis (1982) Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory afferents. Brain Res. 248: 223–236.
- Sweetnam, P. M., J. R. Wrathall, and J. H. Neale (1986) Localization of dynorphin gene product-immunoreactivity in neurons from spinal cord and dorsal root ganglia. Neuroscience 18: 947–955.
- Tam, S. W. (1985) (+)-[3H]SKF 10,047, (+)-[3H]ethylketocyclazocine, u,k,o, and phencyclidine binding sites in guinea pig brain membranes. Eur. J. Pharmacol. 109: 33–41.
- Tang, F., E. Costa, and J. P. Schwartz (1983) Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc. Natl. Acad. Sci. USA 80: 3841–3844.
- Thoenen, H., and Y.-A. Barde (1980) Physiology of nerve growth factor. Physiol. Rev. 60: 1284–1335.
- Tseng, L-F. (1983) Partial cross tolerance to D-Ala2D-Leu5enkephalin after chronic spinal morphine infusion. Life Sci. 32: 2545–2550.
- Uhl, G. R. (1986) Determination of specificity in in situ hybridization. In G. R. Uhl (ed): In Situ Hybridization in Brain. New York: Plenum Press, pp. 253–256.
- Uhl, G. R. (in press) In situ hybridization: Issues with quantitation using radiolabeled hybridization probes. In M. Cann (ed): Methods in Enzymology.
- Uhl, G. R., J. Evans, M. Parta, C. Walsworth, K. Hill, C. Sasek, M. Voight, and S. R. Reppert (1979) Vasopressin and somatostatin mRNA in situ hybridization. In G. R. Uhl (ed): In Situ Hybridization in Brain. New York Plenum Press, pp. 21–48.
- Uhl, G. R., R. R. Goodman, M. J. Kuhar, S. R. Childers, and S. H. Snyder (1979) Immunohistochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res. 166: 75–94.
- Uhl, G. R., H. H. Zingg, and J. F. Habener (1985) Vasopressin mRNA in situ hybridization: Localization and regulation studied with oligonucleotide cDNA probes in rat hypothalamus. Proc. Natl. Acad. Sci. USA 82: 5555–5559.
- Wall, P. D. (1983) Alterations in the central nervous system after deafferentation: Connectivity control. In J. J. Boncia et al. (eds): Advances in Pain Research and Therapy, Vol. 5. New York: Raven Press, pp. 677–689.
- Watson, S. J., H. Khachaturian, L. Taylor, W. Fischli, A. Goldstein, and H. Akil (1983) Pro-dynorphin peptides are found in the same neurons throughout rat brain: Immunocytochemical study. Proc. Natl. Acad. Sci. USA 80: 891–894.
- Weber, E., and J. D. Barchas (1983) Immunohistochemical distribution of dynorphin B in rat brain: Relation to dynorphin A and a-neo-endorphin-systems. Proc. Natl. Acad. Sci. USA 80: 1125–1129.
- Williams, R. G., and G. J. Dockray (1983) Distribution of enkephalin-related peptides in rat brain: Immunohistochemical studies using antisera to met-enkephalin and met-enkephalin Arg6Phe7. Neuroscience 9: 563–586.
- Yoshikawa, K., C. Williams, and S. L. Sobol (1984) Rat brain preproenkephalin messenger RNA: cDNA cloning, primary structure, and distribution in the central nervous system. J. Biol. Chem. 259: 14301–14308.