Bulbospinal projections in the primate: A light and electron microscopic study of a pain modulating system
Allan I. Basbaum
Department of Anatomy, University of California, San Francisco, California 94143
Search for more papers by this authorDiane D. Ralston
Department of Anatomy, University of California, San Francisco, California 94143
Search for more papers by this authorHenry J. Ralston III
Department of Anatomy, University of California, San Francisco, California 94143
Search for more papers by this authorAllan I. Basbaum
Department of Anatomy, University of California, San Francisco, California 94143
Search for more papers by this authorDiane D. Ralston
Department of Anatomy, University of California, San Francisco, California 94143
Search for more papers by this authorHenry J. Ralston III
Department of Anatomy, University of California, San Francisco, California 94143
Search for more papers by this authorAbstract
The projections of the nucleus raphe magnus (NRM) and the immediately adjacent reticular formation were studied in the macaque monkey following injections of the rostroventral medulla with 3H-leucine and examination of the resultant labeled axons and terminals by light and electron microscopic autoradiography. Five monkeys had accurately placed injections, which resulted in fiber pathway labeling that coursed caudally, laterally, and dorsally to project to laminae I, II, and V of subnucleus caudalis of the trigeminal and then traveled in the dorsolateral funiculus of the cord and terminated in similar laminae of the spinal dorsal horn at cervical levels. The pathway was only lightly labeled caudal to the cervical enlargement and could not be readily discerned above background in the thoracic or lumbar cord.
Electron microscopy revealed that axons and terminals serving this system constitute a heterogeneous population. Large-diameter myelinated axons (3–6-μm diameter), small myelinated axons (0.75–3-μm diameter), and clusters of nonmyelinated axons were labeled. Terminals in laminae I, II, and V contained mixtures of clear round and granular vesicles or clear pleomorphic and granular vesicles or formed the central element in synaptic glomeruli. The labeled profiles formed asymmetrical or symmetrical synapses on medium and small dendrites; labeled axosomatic synapses were not observed. In rare instances there were contacts between labeled profiles and vesicle-containing structures, which were probably dendritic, but whether the NRM axon was pre- or postsynaptic to such structures could not be determined.
It was concluded that the NRM in the monkey is organized in a manner quite similar to that previously described in the cat. The wide variety of fiber types and synapti termials serving this system suggests that different classes of neurons participate in it, probably using several transmitter substances that result in varying postsynaptic effects on neurons located in the trigeminal complex and dorsal horn.
Literature Cited
- Abols, I. A. and A. I. Basbaum (1981) Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain-medullary interactions in the modulation of pain. J. Comp. Neurol. 201: 285–297.
- Anderson, S. D., A. I. Basbaum and H. L. Fields (1977) Response of medullary raphe neurons to peripheral stimulation and to systemic opiates. Brain Res. 123: 363–368.
- Basbaum, A. I., C. H. Clanton and H. L. Fields (1978) Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 187: 209–224.
- Basbaum, A. I. and H. L. Fields (1978) Endogenous pain control mechanisms: review and hypothesis. Ann. Neurol. 4: 451–462.
- Basbaum, A. I. and H. L. Fields (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. J. Comp. Neurol. 187: 513–532.
- Basbaum, A. I. and H. L. Fields (1984) Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Ann Rev. Neurosci. 7: 309–338.
- Belcher, G. R., W. Ryall, and R. Schaffner (1978) The differential effects of 5-hydoxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn interneurones in the cat. Brain Res. 151: 307–321.
- Bourgoin, S., J. L. Oliveras, J. Bruxelle, M. Hamon and J. M. Besson (1980) Electrical stimulation of the nucleus raphe magnus in the rat. Effects on 5-HT metabolism in the spinal cord. Brain Res. 194: 377–389.
- Bowker, R. M. (1984) Mechanisms of analgesia in the ventral medulla: Identifying multiple descending inhibitory systems. Pain [suppl.] 2: S193.
- Bowker, R. M., K. N. Westlund, M. C. Sullivan and J. D. Coulter (1982a) Organization of descending serotonergic projections to the spinal cord. In H. G. J. M. Kuypers and G. F. Martin (eds): “Descending Pathways to the Spinal Cord.” Progress in Brain Res., v. 57. Amsterdam: Elsevier, pp. 239–265.
- Bowker, R. M., K. N. Westlund, M. C. Sullivan, J. F. Wilber and J. D. Coulter (1982b) Transmitters of the raphe-spinal complex: Immunocytochemical studies. Peptides 3: 291–298.
- Bowker, R. M., K. N. Westlund, M. C. Sullivan, J. F. Wilber and J. D. Coulter (1983) Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex. Brain Res. 288: 33–48.
- Carlton, S. M., J. M. Chung, R. B. Leonard and W. D. Willis (1985) funicular trajectories of brainstem neurons projecting to the lumbar spinal cord in the monkey (Macaca fascicularis). J. Comp. Neurol. 241: 382–404.
- Chung, J. M., G. A. Kevetter, R. P. Yezierski, L. W. Haber, R. F. Martin and W. D. Willis (1983) Midbrain nuclei projecting to the medial medulla oblongata in the monkey. J. Comp. Neurol. 214: 93–102.
- Coulter, J. D., R. M. Bowker, S. P. Wise, E. A. Murray, A. J. Castiglioni and K. N. Westlund (1979) Cortical, tectal and medullary descending pathways to the cervical spinal cord. In R. H. Granit and O. Pompeiano (eds): “Reflex Control of Posture and Movement.” Progress in Brain Res., v. 50. Amsterdam: Elsevier, pp. 263–279.
- Dahlström, A., and K. Fuxe (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acts Physiol. Scand. 62 [Suppl.] 232: 1–55.
- Dahlström, A., and K. Fuxe (1965) Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of the bulbospinal neuron systems. Acta Physiol. Scand., 64 [Suppl.] 247: 1–36.
- Duggan, D. W., and B. T. Griersmith (1979) Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat. Pain 6: 149–161.
- Fardin, V., J. L. Oliveras and J. M. Besson (1984) Projections from the periaqueductal gray matter to the B3 cellular area (nucleus raphe magnus and nucleus paragigantocellularis) as revealed by transport of horseradish peroxidase in the rat. J. Comp. Neurol. 223: 483–500.
- Fields, H. L. and A. I. Basbaum (1978) Brainstem control of spinal pain transmission neurons. Annu. Rev. Physiol. 40: 217–248.
- Fields, H. L., A. I. Basbaum, C. H. Clanton and S. D. Anderson (1977) Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126: 441–453.
- Gallager, D. W., and A. Pert (1978) Afferents to brain stem nuclei (brain stem raphe, nucleus reticularispontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res. 144: 257–275.
- Gerhart, K. D., R. P. Yezierski, T. K. Wilcox and W. D. Willis (1984) Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. J. Neurophysiol. 51: 450–466.
- Giesler, G. J. Jr., K. D. Gerhart, R. P. Yezierski, T. K. Wilcox and W. D. Willis (1981) Post-synaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res. 204: 184–188.
- Glazer, E. J., H. W. M. Steinbusch, A. A. Verhofstad and A. I. Basbaum (1981) Serotinergic neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin. J. Physiol. (Paris) 77: 241–245.
- Goode, G. E., A. O. Humbertson, Jr. and G. F. Martin (1980) Projections from brainstem reticular formation to laminae I and II of the spinal cord. Studies using light and electron microscopic techniques in the North American opossum. Brain Res. 189: 327–342.
- Guilbaud, G., J. L. Oliveras, G. Giesler, Jr. and J. M. Besson (1977) Effects induced by stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat's spinal cord. Brain Res. 126: 355–360.
- Hammond, D. C., R. A. Levy and H. K. Proudfit (1980) Hypoalgesia induced by microinjection of a norepinephrine antagonist in the raphe magnus: Reversal by intrathecal administration of a serotonin antagonist. Brain Res. 201: 475–479.
- Hentall, I. D. and H. L. Fields (1979) Segmental and descending influences on intraspinal thresholds of single C-fibers. J. Neurophysiol. 42: 1527–1537.
- Hökfelt, T., A. Ljungdahl, H. Steinbusch, A. Verhofstad, G. Nilsson, E. Brodin, B. Pernow, and M. Goldstein (1978) Immunohistochemical evidence of substance P like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience. 3: 517–538.
- Holstege G. and H. G. J. M. Kuypers (1982). The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. In H. G. J. M. Kuypers and G. F. Martin (eds.): “Descending Pathways to the Spinal Cord.” Progress in Brain Res., v. 57. Amsterdam: Elsevier. pp. 145–175.
- Johannessen, J. J., L. R. Watkins and D. J. Mayer (1984) Non-serotonergic origins of the dorsolateral funiculus in the rat ventral medulla. J. Neurosci. 4: 757–766.
- Jordan, L. M., D. R. Kenshalo, Jr., R. F. Martin, L. H. Haber and W. D. Willis (1978) Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5: 135–142.
- Light, A. R. (1983) Postsynaptic effects in spinal lamina I and II neurons produced by stimulating midline medulla and pins. Soc. Neurosci. Abstr. 9: 2.
- Light, A. R. (1985) The spinal terminations of single, physiologically characterized axons originating in the pontomedullary raphe of the cat. J. Comp. Neurol. 234: 536–548.
- Light, A. R. and A. M. Kavookjian (1985) The ultrastructure and synaptic connections of the spinal terminations from single, physiologically characterized axons descending in the dorsolateral funiculus from the midline, pontomedullary region. J. Comp. Neurol. 234: 549–560.
- Light, A. R., A. M. Kavookjian, and P. Petrusz (1983) The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosensory Res. 1: 33–50.
- Mantyh, P. W. (1983) Connections of midbrain periaqueductal gray in the monkey: II. Descending efferent projections. J. Neurophysiol. 49: 594–606.
- Martin, G. F., T. Cabana, F. J. Ditirro, R. H. Ho and A. O. Humbertson, Jr. (1982) Raphespinal projections in the North American opossum: Evidence for connectional heterogeneity. J. Comp. Neurol. 208: 67–84.
- Martin, G. F., R. Waltzer and R. P. Vertes (1984) Spinal projections of the gigantocellular reticular formation in the rat. Evidence for differential projections to laminae I, II and IX. Proc. Sec. Neurosci. 10: 29.
- Miletic, V., M. J. Hoffert, M. A. Ruda, R. Dubner, and Y. Shigenaga (1984) Serotoninergic axonal contacts on identified cat spinal dorsal horn neurons and their correlation with nucleus raphe magnus stimulation. J. Comp. Neurol. 228: 129–141.
- Oliveras, J. L., Y. Hosobuchi, G. Guilbaud and J. M. Benson (1978) Analgesic electrical stimulation of the feline nucleus raphe-magnus: Development of tolerance and its reversal by 5-HTP. Brain Res. 146: 404–409.
- Oliveras, J. L., F. Redjemi, G. Guilbaud and J. M. Benson (1975) Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145.
- Proudfit, H. K. and E. G. Anderson (1974) New long latency bulbospinal evoked potentials blocked by serotonin antagonists. Brain Res. 65: 542–546.
- Ralston, H. J. III and D. D. Ralston (1982) Dorsal root projections to laminae IV, V and VI of the spinal cord of the macaque monkey: A quantitative light and electron microscopic study. J. Comp. Neurol. 212: 435–448.
- Randic, M., and H. H. Yu (1976) Effects of 5-hydroxytryptamine and bradykinin in cat dorsal horn neurons activated by noxious stimuli. Brain Res. 111: 197–203.
- Rexed, B. (1952) The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96: 415–496.
- Rivot, J. P., A. Caouch and J. M. Benson (1980) Nucleus raphe magnus modulation of response of dorsal horn neurons to unmyelinated fiber inputs: Partial involvement of serotonergic pathways. J. Neurophysiol. 44: 1039–1057.
- Ruda, M. A., B. Allen, and S. Gobel (1981) Ultrastructural analysis of medial brainstem afferents to the superficial dorsal horn. Brain Res. 205: 175–180.
- Ruda, M. A., J. Coffield and H. W. M. Steinbusch (1982) Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat. J. Neurosci. 2: 1660–1671.
- Ruda, M. A., and S. Gohel (1980) Ultrastructural characterization of axonal endings in the substantia gelatinosa which take up [3H] serotonin. Brain Res. 184: 57–83.
- Sessle, B. J., J. W. Hu, R. Dubner and G. E. Lucier (1981) Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex, and afferant influences, and effect of naloxone. J. Neurophysiol. 45: 193–207.
- Taber, E., A. Brodal, F. Walberg (1960) The nuclei of the brainstum in the cat. I. Normal topography and cytoarchitecture and general discussion. J. Comp. Neurol. 114: 161–187.
- Wessendorf, M. W., H. K. Proudfit and E. G. Anderson (1981) The identifcation of serotonergic neurons in the nucleus raphe magnus by conduction velocity. Brain Res. 214: 168–173.
- West, D. C. and J. H. Wolstencroft (1977) Location and conduction velocity of raphe-spinal neurones in nucleus raphe magnus and raphe pallidus in the cat. Neurosci. Lett. 5: 147–151.
- Willcockson, W. S., J. M. Chung, Y. Hori, K. H. Lee and W. D. Willis (1984) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J. Neurosci. 4: 732–749.
- Willis, W. D. (1982) Control of nociceptive transmission in the spinal cord. In H. Autrum, D. Ottoson, E. R. Perl, and R. F. Schmidt (eds): “Progress in Sensory Physiology”, v. 3. Berlin: Springer-Verlag, 159 pp.
- Willis, W. D., K. D. Gerhart, W. S. Willcockson, R. P. Yezerski, T. K. Wilcox and C. L. Cargill (1984) Primate raphe- and reticulospinal neurons; Effects of stimulation in periaqueductal gray or VPLc thalamic nucleus. J. Comp. Neurol. 51: 467–480.
- Willis, W. D., L. H. Haber and R. F. Martin (1977) Inhibition of spinothalamic tract cells and interneurons by brainstem stimulation in the monkey. J. Neurophysiol. 40: 968–981.
- Zahs, K., S. Lakos and A. I. Basbaum (1985) Immunoreactive serotonergic axons in the dorsolateral funiculus of the cat and rat. Neurosci. Abstr. 11: 125.
- Zemlan, F. P., M. M. Behbehani and R. M. Beckstead (1984) Ascending and descending projections from nucleus reticularis magnocellularis and nucleus reticularis gigantocellularis: An autoradiographic and horseradish peroxidase study in the rat. Brain Res. 292: 207–220.