Studying natural structural protein fibers by solid-state nuclear magnetic resonance
Alexandre A. Arnold
Department of Chemistry, PharmaQÀM/NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
Search for more papers by this authorCorresponding Author
Isabelle Marcotte
Department of Chemistry, PharmaQÀM/NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
Department of Chemistry, PharmaQÀM/NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, CanadaSearch for more papers by this authorAlexandre A. Arnold
Department of Chemistry, PharmaQÀM/NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
Search for more papers by this authorCorresponding Author
Isabelle Marcotte
Department of Chemistry, PharmaQÀM/NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
Department of Chemistry, PharmaQÀM/NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, CanadaSearch for more papers by this authorAbstract
As a consequence of evolutionary pressure, various organisms have developed structural fibers displaying a range of exceptional mechanical properties adapted specifically to their functions. An understanding of these properties at the molecular level requires a detailed description of local structure, orientation with respect to the fiber and size of constitutive units, and dynamics on various timescales. The size and lack of long-range order in these protein systems constitute an important challenge to classical structural techniques such as high-resolution NMR and X-ray diffraction. Solid-state NMR overcomes these constraints and is uniquely suited to the study of these inherently disordered systems. Solid-state NMR experiments developed or applied to determine structure, orientation, and dynamics of these complex proteins will be reviewed and illustrated through examples of their applications to fibers such as spider and silkworm silks, collagen, elastin, and keratin. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part A 34A: 24–27, 2009.
REFERENCES
- 1 Scheibel T. 2005. Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 16: 427–433.
- 2 Bailey K,Weis-Fogh T. 1962. Amino acid composition of a new rubber-like protein, resilin. Biochim Biophys Acta 48: 452–459.
- 3 Haas F,Gorb S,Blickhan R. 2000. The function of resilin in beetle wings. Proc R Soc Lond B 267: 1375–1381.
- 4 Vincent JFV,Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthr Struct Dev 33: 187–199.
- 5 Debelle L,Tamburro AM. 1999. Elastin: molecular description and function. Int J Biochem Cell Biol 31: 261–272.
- 6 Li B,Daggett V. 2002. Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil 23: 561–573.
- 7 He D,Chung M,Chan E,Alleyne T,Ha KCH,Miao M, et al. 2007. Comparative genomics of elastin: sequence analysis of a highly repetitive protein. Matrix Biol 26: 524–540.
- 8 Hassenkam T,Gutsmann T,Hansma P,Sagert J,Waite JH. 2004. Giant bent-core in the thread forming process of marine mussels. Biomacromolecules 5: 1351–1355.
- 9 Golodnitsky D,Ulus A,Ishay JS. 2003. Thermal characterization of social vespid silk. J Therm Anal Calorim 73: 85–96.
- 10 Sanford K,Kumar M. 2005. New proteins in a materials world. Curr Opin Biotechnol 16: 416–421.
- 11 Altman GH,Diaz F,Jakuba C,Calabro T,Horan RL,Chen J, et al. 2003. Silk-based biomaterials. Biomaterials 24: 401–416.
- 12 Meinel L,Hofmann S,Karageorgiou V,Zichner L,Langer R,Kaplan DL, et al. 2004. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88: 379–391.
- 13 Unger RE,Wolf M,Peters K,Motta A,Migliaresi C,Kirkpatrick CJ. 2004. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials 25: 1069–1075.
- 14 Hofmann S,Wong Po Foo CT,Rossetti F,Textor M,Vunjak-Novakovic G,Kaplan DL, et al. 2006. Silk fibroin as an organic polymer for controlled drug delivery. J Control Release 111: 219–227.
- 15 Hart DS,Gehrke SH. 2007. Thermally associating polypeptides designed for drug delivery produced by genetically engineered cells. J Pharm Sci 96: 484–516.
- 16 Vasconcelos A,Freddi G,Cavaco-Paulo A. 2008. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9: 1299–1305.
- 17 Yeo I-S,Oh J-E,Jeong L,Lee TS,Lee SJ,Park WH, et al. 2008. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules 9: 1106–1116.
- 18 Kaplan DL. 1998. Fibrous proteins—silk as a model system. Polym Degrad Stabil 59: 25–32.
- 19 Duer MJ,McDougal N,Murray RC. 2003. A solid-state NMR study of the structure and molecular mobility of α-keratin. Phys Chem Chem Phys 5: 2894–2899.
- 20 Lucas F,Shaw JT,Smith SG. 1957. The amino acid sequence in a fraction of the fibroin of Bombyx mori. Biochem J 66: 468–479.
- 21 Vepari C,Kaplan DL. 2007. Silk as a biomaterial. Prog Polym Sci 32: 991–1007.
- 22 van Beek JD,Hess S,Vollrath F,Meier BH. 2002. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci USA 99: 10266–10271.
- 23 Xu M,Lewis RV. 1990. Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87: 7120–7124.
- 24 Hinman MB,Lewis RV. 1992. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 267: 19320–19324.
- 25 Jin HJ,Kaplan DL. 2003. Mechanisms of silk processing in insects and spiders. Nature 424: 1057–1061.
- 26 Troncoso OP,Torres FG,Grande CJ. 2008. Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater. Acta Biomater 4: 1114–1117.
- 27 Miller LD,Putthanarat S,Eby RK,Adams WW. 1999. Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy. Int J Biol Macrom 24: 159–165.
- 28 Thiel BL,Kunkel DK,Viney C. 1994. Physical and chemical microstructure of spider dragline: a study by analytical transmission electron microscopy. Biopolymers 34: 1089–1097.
- 29 Gillespie DB,Viney C,Yager P. 1994. Raman spectroscopic analysis for the secondary structure of spider silk fiber. In: D Kaplan, WW Adams, B Farmer, C Viney. Silk Polymers: Materials Science and Biotechnology. Washington: American Chemical Society. pp 155–167.
- 30 Shao Z,Young RJ,Vollrath F. 1999. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. Int J Biol Macromol 24: 295–300.
- 31 Bini E,Foo CWP,Huang J,Karageorgiou V,Kitchel B,Kaplan DL. 2006. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7: 3139–3145.
- 32 Rousseau M-E,Lefevre T,Beaulieu L,Asakura T,Pézolet M. 2004. Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5: 2247–2257.
- 33 Sirichaisit J,Young RJ,Vollrath F. 2000. Molecular deformation in spider dragline silk subjected to stress. Polymer 41: 1223–1227.
- 34 Sirichaisit J,Brookes VL,Young RJ,Vollrath F. 2003. Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4: 387–394.
- 35 Rousseau M-E,Beaulieu L,Lefèvre T,Paradis J,Asakura T,Pézolet M. 2006. Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini. Biomacromolecules 7: 2512–2521.
- 36 Schmidt P,Dybal J,Rodriguez-Cabello JC,Reboto V. 2005. Role of water in structural changes of poly(AVGVP) and poly(GVGVP) studied by FTIR and Raman spectroscopy and ab initio calculations. Biomacromolecules 6: 697–706.
- 37
Thiel BL,Guess KB,Viney C.
1997.
Non-periodic lattice crystals in the hierarchal microstructure of spider (major ampullate) silk.
Biopolymers
41:
703–719.
10.1002/(SICI)1097-0282(199706)41:7<703::AID-BIP1>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 38 Yang Z,Grubb DT,Jelinsky LW. 1997. Small-angle X-ray scattering of spider dragline silk. Macromolecules 30: 8254–8261.
- 39 Grubb DT,Jackrel D,Jelinsky LW. 1997. Structural changes of spider silk on supercontraction. Polym Prepr (Am Chem Soc Div Polym Chem) 38: 73–74.
- 40 Sâito H,Tabeta R,Asakura T,Iwanaga Y,Shoji A,Ozaki T, et al. 1984. High-resolution 13C NMR study of silk fibroin in the solid state by the cross-polarization-magic angle spinning method. Conformational characterization of silk I and silk II type forms of Bombyx mori fibroin by the conformation-dependent 13C chemical shifts. Macromolecules 17: 1405–1412.
- 41 Sâito H,Tabeta R,Shoji A,Ozaki T,Ando I,Miyata T. 1984. A high-resolution 13C-NMR study of collagenlike polypeptides and collagen fibrils in solid state studied by the cross-polarization-magic-angle-spinning method. Manifestation of conformation-dependent 13C chemical shifts and application to conformational characterization. Biopolymers 23: 2279–2297.
- 42 Sâito H. 1986. Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn Reson Chem 24: 835–852.
- 43 Wishart DS,Sykes BD,Richards FM. 1991. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222: 311–333.
- 44 Spera S,Bax A. 1991. Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113: 5490–5492.
- 45 Asakura T,Demura M,Date T,Miyashita N,Ogawa K,Williamson MP. 1997. NMR study of silk I structure of Bombyx mori silk fibroin with 15N- and 13C-NMR chemical shift contour plots. Biopolymers 41: 193–203.
- 46 Asakura T,Iwadate M,Demura M,Williamson MP. 1999. Structural analysis of silk with 13C NMR chemical shift contour plots. Int J Biol Macromol 24: 167–171.
- 47 Luca S,Filippov DV,van Boom JH,Oschkinat H,de Groot HJM,Baldus M. 2001. Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning. J Biomol NMR 20: 325–331.
- 48 Ando S,Yamanobe T,Ando I,Shoji A,Ozaki T,Tabeta R, et al. 1985. Conformational characterization of glycine residues incorporated into some homopolypeptides by solid-state carbon-13 NMR spectroscopy. J Am Chem Soc 107: 7648–7652.
- 49 Ishida M,Asakura T,Yokoi M,Sâito H. 1990. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy. Macromolecules 23: 88–94.
- 50 Simmons A,Ray E,Jelinski LW. 1994. Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27: 5235–5237.
- 51
Kumashiro K,Kim MS,Kaczmarek SE,Sandberg LB,Boyd CD.
2001.
13C cross-polarization/magic angle spinning NMR studies of α-elastin preparations show retention of overall structure and reduction of mobility with a decreased number of cross-links.
Biopolymers
59:
266–275.
10.1002/1097-0282(20011005)59:4<266::AID-BIP1023>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 52 Asakura T,Yao J. 2002. 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Sci 11: 2706–2713.
- 53 Asakura T,Yao J,Yamane T,Umemura K,Ulrich AS. 2002. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy. J Am Chem Soc 124: 8794–8795.
- 54 Holland GP,Lewis RV,Yarger JL. 2004. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk. J Am Chem Soc 126: 5867–5872.
- 55 Zong X,Zhou P,Shao Z,Chen X,Hu B,Deng F, et al. 2004. Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry 43: 11932–11941.
- 56 Yoshimizu H,Ando I. 1990. Conformational characterization of wool keratin and 5′-(carboxymethyl)kerateine in the solid state by 13C CP/MAS NMR spectroscopy. Macromolecules 23: 2908–2912.
- 57 Zhou P,Xie X,Knight DP,Zong X,Deng F,Yao W. 2004. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry 43: 11302–11311.
- 58 Dixon WT. 1982. Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys 77: 1800–1809.
- 59 Schmidt-Rohr K,Spiess HW. 1994. Multidimensional solid-state NMR and polymers. London: Academic Press. 496 p.
- 60 Sakellariou D,Brown SP,Lesage A,Hediger S,Bardet M,Meriles CA, et al. 2003. High-resolution NMR correlation spectra of disordered solids. J Am Chem Soc 125: 4376–4380.
- 61 Cadars S,Lesage A,Emsley L. 2005. Chemical shift in disordered solids. J Am Chem Soc 127: 4466–4476.
- 62 Bardet M,Emsley L,Vincendon M. 1997. Two-dimensional spin-exchange solid-state NMR studies of 13C-enriched wood. Solid State Nucl Magn Reson 8: 25–32.
- 63 Lesage A,Bardet M,Emsley L. 1999. Through-bond carbon-carbon connectivites in disordered solids by NMR. J Am Chem Soc 121: 10987–10993.
- 64 Marcotte I,van Beek JD,Meier BH. 2007. Molecular disorder and structure of spider dragline silk investigated by two-dimensional solid-state NMR. Macromolecules 40: 1995–2001.
- 65 Baldus M,Meier BH. 1996. Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson Ser A 121: 65–69.
- 66 Takegoshi K,Nakamura S,Terao T. 2001. 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344: 631–637.
- 67 Holland GP,Creager MS,Jenkins JE,Lewis RV,Yarger JL. 2008. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J Am Chem Soc 130: 9871–9877.
- 68 Bennett AE,Ok JH,Griffin RG. 1992. Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96: 8624–8627.
- 69 Asakura T,Okonogi M,Nakazawa Y,Yamauchi K. 2006. Structural analysis of alanine tripeptide with antiparallel and parallel β-sheet structures in relation to the analysis of mixed β-sheet structures in Samia cynthia ricini silk protein fiber using solid-state NMR spectroscopy. J Am Chem Soc 128: 6231–6238.
- 70 Kümmerlen J,van Beek JD,Vollrath F,Meier BH. 1996. Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29: 2920–2928.
- 71 Nakazawa Y,Asakura T. 2003. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods. J Am Chem Soc 125: 7230–7237.
- 72 Robyr P,Tomaselli M,Straka J,Grob-Pisano C,Suter UW,Meier BH, et al. 1995. RF-driven and proton-driven NMR polarization transfer for investigating local order. Mol Phys 84: 995–1020.
- 73 Michal CA. 1998. Rotational-echo double resonance in complex biopolymers: a study of Nephila clavipes dragline silk. J Biomol NMR 12: 231–241.
- 74 Holl SM,Hansen D,Waite JH,Schaefer J. 1993. Solid-state NMR analysis of cross-linking in mussel protein glue. Arch Biochem Biophys 302: 255–258.
- 75 van Beek JD,Beaulieu L,Schäfer H,Demura M,Asakura T,Meier BH. 2000. Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405: 1077–1079.
- 76 van Beek JD,Kümmerlen J,Vollrath F,Meier BH. 1999. Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int J Biol Macrom 24: 173–178.
- 77 Blümich B,Hagemeyer A. 1989. Two-dimensional 13C exchange spectroscopy with off-magic angle spinning. Chem Phys Lett 161: 55–59.
- 78 Ashida,Ohgo K,Asakura T. 2002. Determination of the torsion angles of alanine and glycine residues of Bombyx mori silk fibroin and the model peptides in the silk I and silk II forms using 2D spin diffusion solid-state NMR under off magic angle spinning. J Phys Chem B 106: 9434–9439.
- 79 Asakura T,Ashida J,Yamane T,Kameda T,Nakasawa Y,Ohgo K, et al. 2001. A repeated β-turn structure in poly(Ala-Gly) as a model for Silk I of Bombyx mori silk fibroin studied with two-dimensional spin diffusion NMR under off magic angle spinning and rotational echo double resonance. J Mol Biol 306: 291–305.
- 80 Schmidt-Rohr K. 1996. A double-quantum solid-state NMR technique for determining torsion angles in polymers. Macromolecules 29: 3975–3981.
- 81 van Beek JD,Meier BH. 2006. A DOQSY approach for the elucidation of torsion angle distributions in biopolymers: application to silk. J Magn Reson 178: 106–120.
- 82 van Beek JD,Meier BH,Schafer H. 2003. Inverse methods in two-dimensional NMR spectral analysis. J Magn Reson 162: 141–157.
- 83 Gullion T,Kishore R,Asakura T. 2003. Determining dihedral angles and local structure in silk peptide by 13C-2H REDOR. J Am Chem Soc 125: 7510–7511.
- 84 Kovacs FA,Fowler DJ,Gallagher GJ,Thompson LK. 2007. A practical guide for solid-state NMR distance measurements in proteins. Concepts Magn Res 30A: 21–39.
- 85 Klug CA,Burzio LA,Waite JH,Schaefer J. 1996. In situ analysis of peptidyl DOPA in mussel byssus using rotational-echo double-resonance NMR. Arch Biochem Biophys 333: 221–224.
- 86 McDowell LM,Burzio LA,Waite JH,Schaefer J. 1999. Rotational echo double resonance detection os cross-links formed in mussel byssus under high-flow stress. J Biol Chem 274: 20293–20295.
- 87 Kameda T,Zhao C,Ashida J,Asakura T. 2003. Determination of distance of intra-molecular hydrogen bonding in (Ala-Gly)15 with silk I form after removal of the effect of MAS frequency in REDOR experiment. J Magn Reson 160: 91–96.
- 88 Yao J,Nakazawa Y,Asakura T. 2004. Structures of Bombyx mori and Samia cynthia ricini silk fibroins studied with solid state NMR. Biomacromolecules 5: 680–688.
- 89 Nicholson LK,Asakura T,Demura M,Cross TA. 1993. A method for studying the structure of uniaxially aligned biopolymers using solid state 15N-NMR: application to Bombyx mori silk fibroin fibers. Biopolymers 33: 847–861.
- 90 Demura M,Minami M,Asakura T,Cross TA. 1998. Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. J Am Chem Soc 120: 1300–1308.
- 91 Asakura T,Yeo J,Demura M,Itoh T,Fujito T,Imanari M, et al. 1993. Structural analysis of uniaxially aligned polymers using solid-state 15N NMR. Macromolecules 26: 6660–6663.
- 92 Asakura T,Minami M,Shimada R,Demura M,Osanai M,Fujito T, et al. 1997. 2H-labeling of silk fibroin fibers and their structural characterization by solid-state 2H NMR. Macromolecules 30: 2429–2435.
- 93 Fujiwara T,Kobayashi Y,Kyogoku Y,Kataoka K. 1986. Conformation study of 13C enriched fibroin in the solid state using the cross polarization nuclear magnetic resonance method. J Mol Biol 187: 137–140.
- 94 Yamauchi K,Imada T,Asakura T. 2005. Use of microcoil probehead for determination of the structure of oriented silk fibers by solid-state NMR. J Phys Chem B 109: 17689–17692.
- 95 Bonev B,Grieve S,Herberstein ME,Kishore AI,Watts A,Separovic F. 2006. Orientational order of Australian spider silks as determined by solid-state NMR. Biopolymers 82: 134–143.
- 96 Simmons A,Michal CA,Jelinski LW. 1996. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271: 84–87.
- 97 Lee DK,Witterbort RJ,Ramamoorthy A. 1998. Characterization of 15N chemical shift and 1H-15N dipolar coupling interactions in a peptide bond of uniaxially oriented and polycrystalline samples by one-dimensional dipolar chemical shift solid-state NMR spectroscopy. J Am Chem Soc 120: 8868–8874.
- 98 Lee DK,Ramamoorthy A. 1998. A simple one-dimensional solid-state NMR method to characterize the nuclear spin interaction tensors associated with the peptide bond. J Magn Reson 133: 204–206.
- 99 Schmidt-Rohr K,Clauss J,Spiess HW. 1992. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 25: 3273–3277.
- 100 Schmidt-Rohr K,Hehn M,Schaefer D,Spiess HW. 1992. Two-dimensional nuclear magnetic resonance with sample flip for characterizing orientation distributions, and its analogy to x-ray scattering. J Chem Phys 97: 2247–2262.
- 101 Henrichs PM. 1987. Molecular orientation and structure in solid polymers with 13C NMR: a study of biaxial films of poly(ethylene terephthalate). Macromolecules 20: 2099–2112.
- 102 Eles PT,Michal C. 2004. Strain dependent local phase transitions observed during controlled supercontraction reveal mechanisms in spider silk. Macromolecules 37: 1342–1345.
- 103 Eles PT,Michal CA. 2004. A DECODER NMR study of backbone orientation in Nephila clavipes dragline silk under varying strain and draw rate. Biomacromolecules 5: 661–665.
- 104 Tatham AS,Shewry PR. 2000. Elastomeric proteins: biological roles, structures and mechanisms. Trends Biol Sci 299: 567–571.
- 105 Yao XL,Conticello VP,Hong M. 2004. Investigation of the dynamics of an elastin-mimetic polypeptide using solid-state NMR. Magn Reson Chem 42: 267–275.
- 106 Perry A,Stypa MP,Tenn BK,Kumashiro KK. 2002. Solid-state 13C NMR reveals effects of temperature and hydration on elastin. Biophys J 82: 1086–1095.
- 107 Borsacchi S,Cappellozza S,Catalano D,Geppi M,Ierardi V. 2006. Solid state NMR investigation of the molecular dynamics of cocoon silks produced by different Bombyx mori (Lepidoptera) strains. Biomacromolecules 7: 1266–1273.
- 108 Kishore AI,Herberstein ME,Craig CL,Separovic F. 2002. Solid-state NMR relaxation studies of Australian spider silk. Biopolymers 61: 287–297.
- 109 Yang Y,Liivak O,Seidel A,LaVerde G,Zax DB,Jelinski LW. 2000. Supercontraction and backbone dynamics in spider silk: 13C and 2H NMR studies. J Am Chem Soc 122: 9019–9025.
- 110 Torchia DA. 1978. The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts. J Magn Reson 30: 613–616.
- 111 Saito H,Ishida M,Yokoi M,Asakura T. 1990. Dynamic features of side chains in tyrosine and serine residues of some polypeptides and fibroins in the solid as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules 23: 83–88.
- 112 Huster D,Schiller J,Arnold K. 2002. Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid-state NMR spectroscopy. Magn Reson Med 48: 624–632.
- 113 Perry A,Stypa MP,Foster JA,Kumashiro KK. 2002. Observation of the glycines in elastin using 13C and 15N solid-state NMR spectroscopy and isotopic labeling. J Am Chem Soc 124: 6832–6833.
- 114 Tycko R. 2006. Molecular structure of amyloid fibrils: insights from solid-state NMR. Quart Rev Biophys 39: 1–55.
- 115 van Beek JD,Beaulieu L,Meier BH. 2007. Studies of local structure of silk using solid-state NMR. In: GA Webb, ed. Modern Magnetic Resonance, Vol. 3. New York: Springer. pp 1549–1559.
- 116 Pometun MS,Chekmenev EY,Witterbort RJ. 2004. Quantitative observation of backbone disorder in native elastin. J Biol Chem 279: 7982–7987.
- 117 Herzfeld J,Berger AE. 1980. Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73: 6021–6030.
- 118 Sarkar SK,Sullivan CE,Torchia DA. 1983. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J Biol Chem 258: 9762–9767.
- 119 Reichert D,Pascui O,de Azevedo ER,Bonagamba TJ,Arnold K,Huster D. 2004. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels. Magn Reson Chem 42: 276–284.
- 120 Jelinski LW,Sullivan CE,Torchia DA. 1980. 2H NMR study of molecular motion in collagen fibrils. Nature 284: 531–534.
- 121 Davis JH,Auger M. 1999. Static and magic angle spinning NMR of membrane peptides and proteins. Prog NMR Spectrosc 35: 1–84.
- 122 Davis JH,Jeffrey KR,Bloom M,Valic MI. 1976. Quadrupolar echo deuteron magnetic resonance spetcroscopy in ordered hydrocarbon chains. Chem Phys Lett 42: 390–394.
- 123 Jelinski LW,Sullivan CE,Batchelder LS,Torchia DA. 1980. Deuterium nuclear magnetic resonance of specifically labeled native collagen. Biophys J 32: 515–529.
- 124 Batchelder LS,Sullivan CE,Jelinski LW,Torchia DA. 1982. Characterization of leucine side-chain reorientation in collagen-fibrils by solid-state 2H NMR. Proc Natl Acad Sci USA 79: 286–289.
- 125 Mack JW,Torchia DA,Steinert PM. 1988. Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments. Biochemistry 27: 5418–5426.
- 126 Asakura T,Sugino R,Yao J,Takashima H,Kishore R. 2002. Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the proceeded silk fiber (silk II) from Bombyx mori using solid-state 13C, 15N, and 2H NMR. Biochemistry 41: 4415–4424.
- 127 Huster D,Xiao L,Hong M. 2001. Solid-state NMR investigation of the dynamics of the soluble and membrane-bound Colicin Ia channel-forming domain. Biochemistry 40: 7662–7674.
- 128 Clauss J,Schmidt-Rohr K,Spiess HW. 1993. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym 44: 1–17.
- 129 Hong M,Gross JD,Griffin RG. 1997. Site-resolved determination of peptide torsion angle Φ from the relative orientations of backbone NH and CH bonds by solid-state NMR. J Phys Chem B 101: 5869–5874.
- 130 Hong M,Yao X,Jakes K,Huster D. 2002. Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy. J Phys Chem B 106: 7355–7364.
- 131 van Rossum B-J,de Groot CP,Ladizhansky V,Vega S,de Groot HJM. 2000. A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J Am Chem Soc 122: 3465–3472.
- 132 Munowitz MG,Griffin RG,Bodenhausen G,Huang TH. 1981. Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc 103: 2529–2533.
- 133 Roberts JE,Harbison GS,Munowitz MG,Herzfeld J,Griffin RG. 1987. Measurement of heteronuclear bond distances in polycrystalline solids by solid-state NMR techniques. J Am Chem Soc 109: 4163–4169.
- 134 Witter R,Sternberg U,Ulrich AS. 2006. NMR chemical shift powder pattern recoupling at high spinning speed and theoretical tensor evaluation applied to silk fibroin. J Am Chem Soc 128: 2236–2243.
- 135 Antzutkin ON,Shekar SC,Levitt MH. 1995. Two-dimensional sideband separation in magic-angle-spinning NMR. J Magn Reson Ser A 115: 7–19.
- 136 Luz Z,Tekely P,Reichert D. 2002. Slow exchange involving equivalent sites in solids by one-dimensional MAS NMR techniques. Prog Nucl Magn Reson Spectrosc 41: 83–113.
- 137 Yang Y,Schuster M,Blümich B,Spiess HW. 1987. Dynamic magic-angle spinning NMR spectroscopy: exchange-induced sidebands. Chem Phys Lett 139: 239–243.
- 138 De Azevedo ER,Hu W-G,Bonagamba TJ,Schmidt-Rohr K. 1999. Centerband-only detection of exchange: efficient analysis of dynamics in solids by NMR. J Am Chem Soc 121: 8411–8412.
- 139 Yang M,Yamauchi K,Kurokawa M,Asakura T. 2007. Design of silk-like biomaterials inspired by mussel-adhesive protein. Tissue Eng 13: 2941–2947.