Migration of Dictyostelium slugs: Anterior-like cells may provide the motive force for the prespore zone
Corresponding Author
Jean-Paul Rieu
Laboratoire de Physique de la Matière Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Jean-Paul Rieu, Laboratoire de Physique de la Matib̀eère Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Robert R. Kay, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Search for more papers by this authorTamao Saito
Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Search for more papers by this authorHéléne Delanoë-Ayari
Laboratoire de Physique de la Matière Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Search for more papers by this authorYasuji Sawada
Tohoku Institute of Technology, 35-1 Yagiyama-Kasumi, Taihaku, 983, Sendai, Japan
Search for more papers by this authorCorresponding Author
Robert R. Kay
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Jean-Paul Rieu, Laboratoire de Physique de la Matib̀eère Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Robert R. Kay, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Search for more papers by this authorCorresponding Author
Jean-Paul Rieu
Laboratoire de Physique de la Matière Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Jean-Paul Rieu, Laboratoire de Physique de la Matib̀eère Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Robert R. Kay, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Search for more papers by this authorTamao Saito
Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Search for more papers by this authorHéléne Delanoë-Ayari
Laboratoire de Physique de la Matière Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Search for more papers by this authorYasuji Sawada
Tohoku Institute of Technology, 35-1 Yagiyama-Kasumi, Taihaku, 983, Sendai, Japan
Search for more papers by this authorCorresponding Author
Robert R. Kay
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Jean-Paul Rieu, Laboratoire de Physique de la Matib̀eère Condensée et Nanostructures, Université de Lyon, Université de Lyon I, CNRS, UMR 5586, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
Robert R. Kay, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Search for more papers by this authorAbstract
The collective motion of cells in a biological tissue originates from their individual responses to chemical and mechanical signals. The Dictyostelium slug moves as a collective of up to 100,000 cells with prestalk cells in the anterior 10–30% and prespore cells, intermingled with anterior-like cells (AL cells), in the posterior. We used traction force microscopy to measure the forces exerted by migrating slugs. Wild-type slugs exert frictional forces on their substratum in the direction of motion in their anterior, balanced by motive forces dispersed down their length. StlB− mutants lack the signal molecule DIF-1 and hence a subpopulation of AL cells. They produce little if any motive force in their rear and immediately break up. This argues that AL cells, but not prespore cells, are the motive cells in the posterior zone. Slugs also exert large outward radial forces, which we have analyzed during “looping” movement. Each time the anterior touches down after a loop, the outward forces rapidly develop, approximately normal to the almost stationary contact lines. We postulate that these forces result from the immediate binding of the sheath to the substratum and the subsequent application of outward “pressure,” which might be developed in several different ways. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional supporting information may be found in the online version of this article.
Filename | Description |
---|---|
CM_20411_sm_suppinfomovie1.avi974 KB | Supporting Information Movie 1 |
CM_20411_sm_suppinfomovie2.avi1.1 MB | Supporting Information Movie 2 |
CM_20411_sm_suppinfomovie3.avi884 KB | Supporting Information Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Austin MB,Saito T,Bowman ME,Haydock S,Kato A,Moore BS,Kay RR,Noel JP. 2006. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat Chem Biol 2: 494–502.
- Barentin C,Sawada Y,Rieu JP. 2006. An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates. Eur Biophys J. 35: 328–339.
- Bonner JT. 1947. Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. J Exp Zool 106: 1–26.
- Bray D. 2001. Cell Movements: From Molecules to Motility. New York: Garland.
- Breen EJ,Williams KL. 1994. Optical flow analysis of the ventral cellular layer of the migrating Dictyostelium discoideum slug. Microbiology 140: 1241–1252.
- Bretschneider T,Siegert FWeijer CJ. 1995. Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. Proc Natl Acad Sci USA 92: 4387–4391.
- Charras GT,Yarrow JC,Horton MA,Mahadevan L,Mitchison TJ. 2005. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435: 365–369.
- Dallon JC,Othmer HG. 2004. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J Theor Biol 231: 203–222.
- Delanoe-Ayari H,Iwaya S,Maeda YT,Inose J,Riviere C,Sano M,Rieu JP. 2008. Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. Cell Motil Cytoskeleton 65: 314–331.
- Dembo M,Wang YL. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76: 2307–2316.
- Dormann D,Weijer CJ. 2001. Propagating chemoattractant waves coordinate periodic cell movement in Dictyostelium slugs. Development 128: 4535–4543.
- Dormann D,Weijer CJ. 2006. Imaging of cell migration. EMBO J 25: 3480–3493.
- Dormann D,Siegert F,Weijer CJ. 1996. Analysis of cell movement during the culmination phase of Dictyostelium development. Development 122: 761–769.
- Dormann D,Siegert F,Weijer CJ. 2002. Becoming multicellular by aggregation; the morphogenesis of the social amoebae Dicyostelium discoideum. J Biol Phys 28: 765–780.
- Early A,Abe T,Williams J. 1995. Evidence for positional differentiation of prestalk cells and for a morphogenetic gradient in Dictyostelium. Cell 83: 91–99.
- Eliott S,Vardy PH,Williams KL. 1991. The distribution of myosin II in Dictyostelium discoideum slug cells. J Cell Biol 115: 1267–1274.
- Fuchs M,Jones MK,Williams KL. 1993. Characterisation of an epithelium-like layer of cells in the multicellular Dictyostelium discoideum slug. J Cell Sci 105: 243–253.
- Grant WN,Williams KL. 1983. Monoclonal antibody characterization of slime sheath: The extracellular matrix of Dictyostelium discoideum. EMBO J 2: 935–940.
- Inouye K. 1984. Measurement of the motive force of the migrating slug of Dictyostelium discoideum by a centrifuge method. Protoplasma 121: 171–177.
- Inouye K,Takeuchi I. 1980. Motive force of the migrating pseudoplasmodium of the cellular slime mould Dictyostelium discoideum. J Cell Sci 41: 53–64.
- Iwadate Y,Yumura S. 2008a. Actin-based propulsive forces and myosin-II-based contractile forces in migrating Dictyostelium cells. J Cell Sci 121: 1314–1324.
- Iwadate Y,Yumura S. 2008b. Molecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies. Biotechniques 44: 739–750.
- Kessin RH,Gundersen GG,Zaydfudim VGrimson M. 1996. How cellular slime molds evade nematodes. Proc Natl Acad Sci USA 93: 4857–4861.
- Loomis WF. 1972. Role of the surface sheath in the control of morphogenesis in Dictyostelium discoideum. Nat New Biol 240: 6–9.
- Maeda Y. 1977. Role of cyclic AMP in the polarized movement of the migrating pseudoplasmodium of Dictyostelium discoideum. Dev Growth Differ 19: 201–205.
- McRobbie SJ,Jermyn KA,Duffy K,Blight K,Williams JG. 1988. Two DIF-inducible,prestalk-specific mRNAs of Dictyostelium encode extracellular matrix protein of the slug. Development 104: 275–284.
- Odell GM,Bonner JT. 1986. How the Dictyostelium discoideum grex crawls. Philos Trans R Soc Lond 312: 487–525.
- Rafols I. 2001b. Study on the proportion regulation of cell types in Dictyostelium discoideum. PhD Thesis, Tohoku University, Sendai, Japan.
- Rafols I,Amagai A,Maeda Y,MacWilliams HK,Sawada Y. 2001a. Cell type proportioning in Dictyostelium slugs: Lack of regulation within a 2.5-fold tolerance range. Differentiation 67: 107–116.
- Rieu JP,Barentin C,Sawai S,Maeda Y,Sawada Y. 2004. Cell movements and mechanical force distribution during the migration of Dictyostelium slugs. J Biol Phys 30: 345–364.
- Rieu JP,Barentin C,Maeda Y,Sawada Y. 2005. Direct mechanical force measurements during the migration of Dictyostelium slugs using flexible substrata. Biophys J 89: 3563–3576.
- Saito T,Kato A,Kay RR. 2008. DIF-1 induces the basal disc of the Dictyostelium fruiting body. Dev Biol 317: 444–453.
- Schwarz US,Balaban NQ,Riveline D,Bershadsky A,Geiger B,Safran SA. 2002. Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophys J 83: 1380–1394.
- Shaffer BM. 1965. Cell movement within aggregates of the slime mould Dictyostelium discoideum revealed by surface markers. J Embryo Exp Morphol 13: 97–117.
- Siegert F,Weijer CJ. 1992. Three-dimensional scroll waves organize Dictyostelium slugs. Proc Natl Acad Sci USA 89: 6433–6437.
- Sternfeld J,O'Mara R. 2005. Aerial migration of the Dictyostelium slug. Dev Growth Differ 47: 49–58.
- Uchida KS,Yumura S. 2004. Dynamics of novel feet of Dictyostelium cells during migration. J Cell Sci 117: 1443–1455.
- Umeda T,Inouye K. 2004. Cell sorting by differential cell motility: A model for pattern formation in Dictyostelium. J Theor Biol 226: 215–224.
- Vasiev B,Weijer CJ. 2003. Modelling of Dictyostelium discoideum slug migration. J Theor Biol 223: 347–359.
- Wang N,Tolic-Norrelykke IM,Chen J,Mijailovich SM,Butler JP,Fredberg JJ,Stamenovic D. 2002. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282: C606–C616.
- Williams KL,Vardy PH,Segel LA. 1986. Cell migrations during morphogenesis: Some clues from the slug of Dictyostelium discoideum. Bioessays 5: 148–152.
- Yumura S,Mori H,Fukui Y. 1984. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J Cell Biol 99: 894–899.
- Yumura S,Kurata K,Kitanishi-Yumura T. 1992. Concerted movement of prestalk cells in migrating. Slugs of Dictyostelium revealed by the localization of myosin. Development Growth Differ 34: 319–328.