Space Charge Improved Poly(Aryl Ether Sulfone) Composite Membrane for Osmotic Energy Conversion
Jundong Zhong
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorHongyan Qi
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorTingting Xu
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorWeibo Sun
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorZhe Zhao
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorHaibo Zhang
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Xuanbo Zhu
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]Search for more papers by this authorZhenhua Jiang
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorJundong Zhong
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorHongyan Qi
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorTingting Xu
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorWeibo Sun
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorZhe Zhao
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorHaibo Zhang
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Xuanbo Zhu
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]Search for more papers by this authorZhenhua Jiang
National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorComprehensive Summary
The ion-selective porous membrane is the key component in osmotic energy conversion, and optimizing its permeability and selectivity is crucial for improving output performance. Here, to construct a permeability and selectivity synergistically enhanced osmotic energy generator, the surface and space charge synergistically enhanced 3D composite membrane is prepared by inserting sulfonated hydrogels into the 3D ion channels with tunable surface charge. The membrane's selectivity is improved from 0.66 to 0.94 by increasing the charge density on the membrane surface and the spatial charge density of the membrane. The experimental and simulation results showed that the synergistic enhancement of the spatial and surface charges significantly improved the electrostatic interactions between the ions and the ion channels, which led to the enhancement of selectivity, net ionic fluxes, and output performance. The space charge improved composite membrane presents an advanced power density of about 6.4 W·m–2 under a 50-fold concentration gradient, which is nearly 2 times that of the phase inversion membrane without hydrogels. Our study provides a promising solution for constructing high-performance osmotic energy generators.
Supporting Information
Filename | Description |
---|---|
cjoc202401024-sup-0001-supinfo.pdfPDF document, 2.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Pattle, R. E. Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954, 174, 660–660.
- 2 Loeb, S.; Norman, R. S. Osmotic Power Plants. Science 1975, 189, 654–655.
- 3 Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.
- 4 Yang, J.; Tu, B.; Zhang, G.; Liu, P.; Hu, K.; Wang, J.; Yan, Z.; Huang, Z.; Fang, M.; Hou, J.; et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.
- 5 Liu, S.-H.; Zhang, D.; Fang, Y.-P.; Liang, Z.-X.; Zhao, Z.-K.; Chen, X.-C.; Yao, J.; Jiang, L. Topologically Programmed Graphene Oxide Membranes with Bioinspired Superstructures toward Boosting Osmotic Energy Harvesting. Adv. Funct. Mater. 2022, 33, 2211532.
- 6 Kim, D.-K.; Duan, C.; Chen, Y.-F.; Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid Nanofluid 2010, 9, 1215–1224.
- 7 Chu, C.-W.; Fauziah, A. R.; Yeh, L.-H. Optimizing Membranes for Osmotic Power Generation. Angew. Chem. Int. Ed. 2023, 62, e202303582.
- 8 Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P. Salinity gradient power: influences of temperature and nanopore size. Nanoscale 2016, 8, 2350–2357.
- 9 Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Ionic Transport Through Single Solid-State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates. Small 2009, 5, 1287–1291.
- 10 Duleba, D.; Dutta, P.; Denuga, S.; Johnson, R. P. Effect of Electrolyte Concentration and Pore Size on Ion Current Rectification Inversion. ACS Meas. Sci. Au 2022, 2, 271–277.
- 11 Gao, J.; Liu, X.; Jiang, Y.; Ding, L.; Jiang, L.; Guo, W. Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators. Small 2019, 15, 1804279.
- 12 Su, J.; Ji, D.; Tang, J.; Li, H.; Feng, Y.; Cao, L.; Jiang, L.; Guo, W. Anomalous Pore-Density Dependence in Nanofluidic Osmotic Power Generation. Chin. J. Chem. 2018, 36, 417–420.
- 13 Li, X.; Zhai, T.; Gao, P.; Cheng, H.; Hou, R.; Lou, X.; Xia, F. Role of outer surface probes for regulating ion gating of nanochannels. Nat. Commun. 2018, 9, 40.
- 14 Cao, L.; Wen, Q.; Feng, Y.; Ji, D.; Li, H.; Li, N.; Jiang, L.; Guo, W. On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane-Scale Osmotic Energy Conversion. Adv. Funct. Mater. 2018, 28, 1804189.
- 15 Gao, P.; Ma, Q.; Ding, D.; Wang, D.; Lou, X.; Zhai, T.; Xia, F. Distinct functional elements for outer-surface anti-interference and inner- wall ion gating of nanochannels. Nat. Commun. 2018, 9, 4557.
- 16 Zhong, J.; Xu, T.; Qi, H.; Sun, W.; Zhao, S.; Zhao, Z.; Sun, Y.; Zhu, Y.; Mu, J.; Zhang, H.; et al. Permeability and selectivity synergistically enhanced nanofluidic membrane for osmotic energy harvesting. Carbon Energy 2024, 6, e458.
- 17 Wang, J.; Zhou, Y.; Jiang, L. Bioinspired Three-Dimensional Nanoporous Membranes for Salinity-Gradient Energy Harvesting. Acc. Mater. Res. 2023, 4, 86–100.
- 18 Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421.
- 19 Wang, J.; Liu, L.; Yan, G.; Li, Y.; Gao, Y.; Tian, Y.; Jiang, L. Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels. ACS Appl. Mater. Interfaces 2021, 13, 14507–14517.
- 20 Zhu, X.; Zhong, J.; Hao, J.; Wang, Y.; Zhou, J.; Liao, J.; Dong, Y.; Pang, J.; Zhang, H.; Wang, Z.; et al. Polymeric Nano-Blue-Energy Generator Based on Anion-Selective Ionomers with 3D Pores and pH-Driving Gating. Adv. Energy Mater. 2020, 10, 2001552.
- 21 Mai, V.-P.; Fauziah, A. R.; Gu, C.-R.; Yang, Z.-J.; Wu, K. C. W.; Yeh, L.-H.; Yang, R.-J. Two-dimensional metal–organic framework nanocomposite membranes with shortened ion pathways for enhanced salinity gradient power harvesting. Chem. Eng. J. 2024, 484, 149649.
- 22 Park, C. H.; Bae, H.; Kim, C.-s.; Peck, D.-H.; Lee, J. Nanofluidic energy harvesting through a biological 1D protein-embedded nanofilm membrane by interfacial polymerization. Nano Energy 2020, 74, 104906.
- 23 Lu, X.; Elimelech, M. Fabrication of Desalination Membranes by Interfacial Polymerization: History, Current Efforts, and Future Directions. Chem. Soc. Rev. 2021, 50, 6290–6307.
- 24 Qi, H.; Zhong, J.; Sun, W.; Xu, T.; Xing, Z.; Zhao, S.; Qian, H.; Zhang, H.; Mu, J.; Zhu, X.; et al. Integrated Device for Osmotic Energy Collection and Detection Based on the Metal–Organic Framework of Nanoconfinement Channels. CCS Chem. 2024, DOI: https://doi.org/10.31635/ccschem.024.202404323.
- 25 Lin, Y.-C.; Chen, H.-H.; Chu, C.-W.; Yeh, L.-H. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Nano Lett. 2024, 24, 11756–11762.
- 26 Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H. Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. J. Mater. Chem. A 2022, 10, 2867–2875.
- 27 Lin, C.-Y.; Combs, C.; Su, Y.-S.; Yeh, L.-H.; Siwy, Z. S. Rectification of Concentration Polarization in Mesopores Leads To High Conductance Ionic Diodes and High Performance Osmotic Power. J. Am. Chem. Soc. 2019, 141, 3691–3698.
- 28 Peinemann, K.-V.; Abetz, V.; Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 2007, 6, 992–996.
- 29 Chen, W.; Dong, T.; Xiang, Y.; Qian, Y.; Zhao, X.; Xin, W.; Kong, X.-Y.; Jiang, L.; Wen, L. Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. Adv. Mater. 2022, 34, 2108410.
- 30 Cervellere, M. R.; Qian, X.; Ford, D. M.; Carbrello, C.; Giglia, S.; Millett, P. C. Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments. J. Membr. Sci. 2021, 619, 118779.
- 31 Zhao, Y.; Wang, J.; Kong, X.-Y.; Xin, W.; Zhou, T.; Qian, Y.; Yang, L.; Pang, J.; Jiang, L.; Wen, L. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Natl. Sci. Rev. 2020, 7, 1349–1359.
- 32 Dai, Q.; Zhao, Z.; Shi, M.; Deng, C.; Zhang, H.; Li, X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J. Membr. Sci. 2021, 632, 119355.
- 33 Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817.
- 34 Naik, N. S.; Padaki, M.; Isloor, A. M.; Nagaraja, K. K.; Vishnumurthy, K. A. Poly(Ionic Liquid)-Based Charge and Size Selective Loose Nanofiltration Membrane for Molecular Separation. Chem. Eng. J. 2021, 418, 129372.
- 35 Wang, Y.; Wang, Q.; Xia, Q.-C.; Yang, W.-J.; Wang, X.-X.; Sun, S.-P.; Xing, W. Nanocapsule Controlled Interfacial Polymerization Finely Tunes Membrane Surface Charge for Precise Molecular Sieving. Chem. Eng. J. 2021, 409, 128198.
- 36 Watanabe, T.; Nakagawa, K.; Gonzales, R. R.; Kitagawa, T.; Matsuoka, A.; Kamio, E.; Yoshioka, T.; Matsuyama, H. Influence of Structure of Porous Polyketone Microfiltration Membranes on Separation of Water-in-Oil Emulsions. J. Appl. Polym. Sci. 2023, 140, e53900.
- 37 Tizhoush, N. Y.; Jabbarvand Behrouz, S.; Vatanpour, V.; Orooji, Y.; Khataee, A. A Negatively Charged Polyethersulfone Nanofiltration Membrane Enriched with Ag-Functionalized Titanium Silicon Carbide for the Removal of Organic Pollutants from Water. Desalination 2024, 591, 118034.
- 38 Huang, X.; Pang, J.; Zhou, T.; Jiang, L.; Wen, L. Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation. ACS Appl. Polym. Mater. 2021, 3, 485–493.
- 39 Huang, X.; Zhang, Z.; Kong, X.-Y.; Sun, Y.; Zhu, C.; Liu, P.; Pang, J.; Jiang, L.; Wen, L. Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy 2019, 59, 354–362.
- 40 Adamson, A. W. Physical chemistry of surfaces, Wiley, New York, 1976.
- 41 Chen, X.-C.; Zhang, H.; Liu, S.-H.; Zhou, Y.; Jiang, L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS Nano 2022, 16, 17613–17640.
- 42 Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chem. Rev. 2017, 117, 4759–4805.
- 43 Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisolle, W.; Azzaroni, O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem. Sci. 2021, 12, 12874–12910.
- 44 Iulianelli, A.; Basile, A. Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review. Int. J. Hydrogen Energy 2012, 37, 15241–15255.
- 45 Wang, D.; Wang, Z.; Chen, J.; Zhi, H.; Liu, Y.; Tang, J.; Li, N.; Zhang, Y.; An, M.; Liu, H.; Xue, G. Low-Friction Graphene Oxide-Based Ion Selective Membrane for High-Efficiency Osmotic Energy Harvesting. Adv. Energy Mater. 2024, 14, 2302262.
- 46 Chen, W.; Wang, Q.; Chen, J.; Zhang, Q.; Zhao, X.; Qian, Y.; Zhu, C.; Yang, L.; Zhao, Y.; Kong, X.-Y.; et al. Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. Nano Lett. 2020, 20, 5705–5713.
- 47 Bian, G.; Pan, N.; Luan, Z.; Sui, X.; Fan, W.; Xia, Y.; Sui, K.; Jiang, L. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Angew. Chem. Int. Ed. 2021, 60, 20294–20300.
- 48 Huang, K.-T.; Hung, W.-H.; Su, Y.-C.; Tang, F.-C.; Linh, L. D.; Huang, C.-J.; Yeh, L.-H. Zwitterionic Gradient Double-Network Hydrogel Membranes with Superior Biofouling Resistance for Sustainable Osmotic Energy Harvesting. Adv. Funct. Mater. 2023, 33, 2211316.
- 49 Long, Z.; Miyake, J.; Miyatake, K. Proton exchange membranes containing densely sulfonated quinquephenylene groups for high performance and durable fuel cells. J. Mater. Chem. A 2020, 8, 12134–12140.
- 50 Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 2018, 4, eaau1665.
- 51 McKelvey, S. A.; Koros, W. J. Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes. J. Membr. Sci. 1996, 112, 29–39.
- 52 Nguyen, T. P. N.; Yun, E.-T.; Kim, I.-C.; Kwon, Y.-N. Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J. Membr. Sci. 2013, 433, 49–59.
- 53 Liu, D.; Xie, Y.; Zhong, J.; Yang, F.; Pang, J.; Jiang, Z. High methanol resistance semi-crystalline sulfonated poly(ether ketone) proton exchange membrane for direct methanol fuel cell. J. Membr. Sci. 2022, 650, 120413.
- 54 Jo, S. G.; Kim, T.-H.; Yoon, S. J.; Oh, S.-G.; Cha, M. S.; Shin, H. Y.; Ahn, J. M.; Lee, J. Y.; Hong, Y. T. Synthesis and Investigation of Random-Structured Ionomers with Highly Sulfonated Multi-Phenyl Pendants for Electrochemical Applications. J. Membr. Sci. 2016, 510, 326–337.
- 55 Zhao, Z.; Liu, D.; Zhong, J.; Li, J.; Lin, Z.; Zhao, Z.; Pang, J. Poly(Aryl Ether Sulfone Ketone) with Densely Sulfonated Structural Units Facilitate Microphase Separation to Promote Proton Transport. J. Membr. Sci. 2024, 693, 122319.
- 56 Zhu, Z.; Wang, D.; Tian, Y.; Jiang, L. Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. J. Am. Chem. Soc. 2019, 141, 8658–8669.
- 57 Li, T.; Li, S. X.; Kong, W.; Chen, C.; Hitz, E.; Jia, C.; Dai, J.; Zhang, X.; Briber, R.; Siwy, Z.; et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 2019, 5, eaau4238.
- 58 Li, S. X.; Guan, W.; Weiner, B.; Reed, M. A. Direct Observation of Charge Inversion in Divalent Nanofluidic Devices. Nano Lett. 2015, 15, 5046–5051.
- 59 Stein, D.; Kruithof, M.; Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93, 035901.
- 60 Guo, W.; Cao, L.; Xia, J.; Nie, F.-Q.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L. Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Adv. Funct. Mater. 2010, 20, 1339–1344.
- 61 He, Y.; Gillespie, D.; Boda, D.; Vlassiouk, I.; Eisenberg, R. S.; Siwy, Z. S. Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion. J. Am. Chem. Soc. 2009, 131, 5194–5202.
- 62 Chen, Y.; Feng, J.; Fang, M.; Wang, X.; Liu, Y.; Li, S.; Wen, L.; Zhu, Y.; Jiang, L. Large-Scale, Ultrastrong Cu2+ Cross-Linked Sodium Alginate Membrane for Effective Salinity Gradient Power Conversion. ACS Appl. Polym. Mater. 2021, 3, 3902–3910.
- 63 Li, C.; Wen, L.; Sui, X.; Cheng, Y.; Gao, L.; Jiang, L. Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 2021, 7, eabg2183.
- 64 Wu, C.; Wang, J.; Wu, R.; Zeng, H.; Chen, X.; Yao, C.; Zhou, J.; Kong, X.-Y.; Wen, L.; Jiang, L. Three-dimensional hydrogel membranes for boosting osmotic energy conversion: Spatial confinement and charge regulation induced by zirconium ion crosslinking. Nano Today 2024, 58, 102468.