Recent Progress of Artificial Cilia: From Bioinspired Design, Facile Fabrication to Practical Application†
Yingbo Li
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorRan Zhao
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jingxin Meng
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]Search for more papers by this authorYingbo Li
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorRan Zhao
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jingxin Meng
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]Search for more papers by this author† Dedicated to the Special Issue of Biomimetic Materials
Comprehensive Summary
As well known, cilia play an irreplaceable role in sensing and movement of natural organisms because they can respond to external signals and generate net flow in complex environments. Based on these findings, scientists further explored the functions of natural cilia and have developed many artificial cilia in the past nearly thirty years. This review provides an overview of recent progress of artificial cilia. Firstly, we summarize the characteristics of natural cilia. Subsequently, we introduce the fabrication methods including template, magnetic assembly, lithography, and 3D printing. Then we discuss the stimulus actuation of artificial cilia from two major modes: contact control and remote control. In addition, five typical types of applications, including adhesion regulation, intelligent control, mobile microrobot, biological sensor and anti-counterfeiting, were reviewed in detail. Finally, we present the challenges and future development in the fields of advanced artificial cilia.
Key Scientists
From 1994 to 1997, research teams including Bohringer, Donald, and Macdonald from Cornell University and Suh and Kovacs from Stanford University reported on the application of artificial cilia in the field of micro-electro-mechanical systems (MEMS) technology,[1-3] while Fujita from the University of Tokyo and Stemme from KTH were also conducting research in artificial cilia fields at the same time. In 2006, Krijnen's team designed a combination of cricket cerci cilia and MEMS technology to further extend the application of artificial cilia to flow sensors.[4] In 2007, Superfine's crew introduced the polycarbonate track-etched (PCTE) membrane method into the fabrication of artificial cilia, achieving the fabrication of high aspect ratio cilia in a liquid free environment.[5] Since 2008, Toonder's lab has been focusing on the research of artificial cilia and have made outstanding contributions in lab on chip and achieve various stimuli responsive actuation of artificial cilia.[6-8] In 2010, Alexeev's research team used computer simulations to design a hydrodynamic model of ciliary strike.[9] Since 2017, Jiang and his coworkers have made progress in the application of directional manipulation of artificial cilia, including research on solids, droplets and bubbles.[10-13] In 2020—2024, Sitti's research group has introduced cilia into the field of bioinspired microrobot and realized the programmed actuation of artificial cilia from the perspectives of electricity, photothermal and magnetic.[14-19] In 2022, Jeong's group innovated the traditional magnetic assembly method to fabricate three-dimensional nanoscale cilia with regular spatial distribution and controllable geometry.[20-21]
References
- 1 Bohringer, K. F.; Donald, B. R.; Mihailovich, R.; MacDonald, N. C. A theory of manipulation and control for microfabricated actuator arrays. IEEE Workshop on Micro Electro Mechanical Systems 1994, 102–107.
- 2 Bohringer, K. F.; Donald, B. R.; MacDonald, N. C.; Kovacs, G. T. A.; Suh, J. W. Computational Methods for Design and Control of MEMS Micromanipulator Arrays. IEEE Comput. Sci. Eng. 1997, 4, 17–29.
- 3 Suh, J. W.; Glander, S. F.; Darling, R. B.; Storment, C. W.; Kovacs, G. T. A. Organic Thermal and Electrostatic Ciliary Microactuator Array for Object Manipulation. Sens. Actuators, A 1997, 58, 51–60.
- 4 Krijnen, G. J. M.; Dijkstra, M.; van Baar, J. J.; Shankar, S. S.; Kuipers, W. J.; de Boer, R. J. H.; Altpeter, D.; Lammerink, T. S. J.; Wiegerink, R. MEMS Based Hair Flow-Sensors As Model Systems for Acoustic Perception Studies. Nanotechnology 2006, 17, S84–S89.
- 5 Evans, B. A.; Shields, A. R.; Carroll, R. L.; Washburn, S.; Falvo, M. R.; Superfine, R. Magnetically Actuated Nanorod Arrays as Biomimetic Cilia. Nano Lett. 2007, 7, 1428–1434.
- 6 Toonder, J. d.; Bos, F.; Broer, D.; Filippini, L.; Gillies, M.; de Goede, J.; Mol, T.; Reijme, M.; Talen, W.; Wilderbeek, H.; Khatavkar, V.; Anderson, P. Artificial Cilia for Active Micro-Fluidic Mixing. Lab Chip 2008, 8, 533–541.
- 7 Khaderi, S. N.; Craus, C. B.; Hussong, J.; Schorr, N.; Belardi, J.; Westerweel, J.; Prucker, O.; Rühe, J.; den Toonder, J. M. J.; Onck, P. R. Magnetically-Actuated Artificial Cilia for Microfluidic Propulsion. Lab Chip 2011, 11, 2002–2010.
- 8 Wang, Y.; Gao, Y.; Wyss, H.; Anderson, P.; den Toonder, J. Out of the Cleanroom, Self-Assembled Magnetic Artificial Cilia. Lab Chip 2013, 13, 3360–3366.
- 9 Ghosh, R.; Buxton, G. A.; Usta, O. B.; Balazs, A. C.; Alexeev, A. Designing Oscillating Cilia that Capture or Release Microscopic Particles. Langmuir 2010, 26, 2963–1968.
- 10 Cao, M. Y.; Jin, X.; Peng, Y.; Yu, C. M.; Li, K.; Liu, K. S.; Jiang, L. Unidirectional Wetting Properties on Multi-Bioinspired Magnetocontrollable Slippery Microcilia. Adv. Mater. 2017, 29, e1606869.
- 11 Ben, S.; Tai, J.; Ma, H.; Peng, Y.; Zhang, Y.; Tian, D. L.; Liu, K. S.; Jiang, L. Cilia-Inspired Flexible Arrays for Intelligent Transport of Viscoelastic Microspheres. Adv. Funct. Mater. 2018, 28, e1706666.
- 12 Ben, S.; Yao, J. J.; Ning, Y. Z.; Zhao, Z. H.; Zha, J. L.; Tian, D. L.; Liu, K. S.; Jiang, L. A Bioinspired Magnetic Responsive Cilia Array Surface for Microspheres Underwater Directional Transport. Sci. China Chem. 2020, 63, 347–353.
- 13 Ben, S.; Ning, Y. Z.; Zhao, Z. H.; Li, Q.; Zhang, X. D.; Jiang, L.; Liu, K. S. Underwater Directional and Continuous Manipulation of Gas Bubbles on Superaerophobic Magnetically-Responsive Microcilia Array. Adv. Funct. Mater. 2022, 32, e2113374.
- 14 Dong, X.; Lum, G. Z.; Hu, W.; Zhang, R.; Ren, Z.; Onck, P. R.; Sitti, M. Bioinspired Cilia Arrays with Programmable Nonreciprocal Motion and Metachronal Coordination. Sci. Adv. 2020, 6, eabc9323.
- 15 Liu, Z. M.; Li, M.; Dong, X. G.; Ren, Z. Y.; Hu, W. Q.; Sitti, M. Creating Three-Dimensional Magnetic Functional Microdevices via Molding- Integrated Direct Laser Writing. Nat. Commun. 2022, 13, 2016.
- 16 Ren, Z.; Zhang, M.; Song, S.; Liu, Z.; Hong, C.; Wang, T.; Dong, X.; Hu, W.; Sitti, M. Soft-Robotic Ciliated Epidermis for Reconfigurable Coordinated Fluid Manipulation. Sci. Adv. 2022, 8, eabq2345.
- 17 Han, J.; Dong, X.; Yin, Z.; Zhang, S.; Li, M.; Zheng, Z.; Ugurlu, M. C.; Jiang, W.; Liu, H.; Sitti, M. Actuation-Enhanced Multifunctional Sensing and Information Recognition by Magnetic Artificial Cilia Arrays. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2308301120.
- 18 Zhang, S.; Hu, X.; Li, M.; Bozuyuk, U.; Zhang, R.; Suadiye, E.; Han, J.; Wang, F.; Onck, P.; Sitti, M. 3D-Printed Micrometer-Scale Wireless Magnetic Cilia with Metachronal Programmability. Sci. Adv. 2023, 9, eadf9462.
- 19 Zhang, M. C.; Pal, A.; Lyu, X.; Wu, Y. D.; Sitti, M. Artificial- Goosebump-Driven Microactuation. Nat. Mater. 2024, 23, 560–569.
- 20 Kang, M.; Lee, D.; Bae, H.; Jeong, H. E. Magnetoresponsive Artificial Cilia Self-Assembled with Magnetic Micro/Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 55989–55996.
- 21 Kang, M.; Seong, M.; Lee, D.; Kang, S. M.; Kwak, M. K.; Jeong, H. E. Self-Assembled Artificial Nanocilia Actuators. Adv. Mater. 2022, 34, e2200185.
- 22 Peleshanko, S.; Julian, M. D.; Ornatska, M.; McConney, M. E.; LeMieux, M. C.; Chen, N.; Tucker, C.; Yang, Y.; Liu, C.; Humphrey, J. A. C.; Tsukruk, V. V. Hydrogel-Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast. Adv. Mater. 2007, 19, 2903–2909.
- 23 Rosenbaum, J. L.; Witman, G. B. Intraflagellar Transport. Nat. Rev. Mol. Cell Biol. 2002, 3, 813–825.
- 24 Button, B.; Cai, L. H.; Ehre, C.; Kesimer, M.; Hill, D. B.; Sheehan, J. K.; Boucher, R. C.; Rubinstein, M. A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science 2012, 337, 937–941.
- 25 Gilpin, W.; Bull, M. S.; Prakash, M. The Multiscale Physics of Cilia and Flagella. Nat. Rev. Phys. 2020, 2, 74–88.
- 26 Afzelius, B. A. Cilia-Related Diseases. J. Pathol. 2004, 204, 470–477.
- 27 Guo, D.; Ru, J.; Xie, L.; Wu, M.; Su, Y.; Zhu, S.; Xu, S.; Zou, B.; Wei, Y.; Liu, X.; Liu, Y.; Liu, C. Tmem138 Is Iocalized to The Connecting Cilium Essential for Rhodopsin localization and Outer Segment Biogenesis. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2109934119.
- 28 Pokroy, B.; Epstein, A. K.; Persson-Gulda, M. C. M.; Aizenberg, J. Fabrication of Bioinspired Actuated Nanostructures with Arbitrary Geometry and Stiffness. Adv. Mater. 2009, 21, 463–469.
- 29 Keißner, A.; Brücker, C. Directional Fluid Transport Along Artificial Ciliary Surfaces With Base-Layer Actuation of Counter-Rotating Orbital Beating Patterns. Soft Matter 2012, 8, 5342–5349.
- 30 Wang, Y.; den Toonder, J.; Cardinaels, R.; Anderson, P. A Continuous Roll-Pulling Approach For the Fabrication of Magnetic Artificial Cilia with Microfluidic Pumping Capability. Lab Chip 2016, 16, 2277–2286.
- 31 Islam, T. U.; Bellouard, Y.; den Toonder, J. M. J. Highly Motile Nanoscale Magnetic Artificial Cilia. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2104930118.
- 32 Zhang, S. Z.; Cui, Z. W.; Wang, Y.; den Toonder, J. Metachronal μ-Cilia for On-Chip Integrated Pumps and Climbing Robots. ACS Appl. Mater. Interfaces 2021, 13, 20845–20857.
- 33 Miao, J. Q.; Sun, S. Q.; Zhang, T. S.; Li, G.; Ren, H.; Shen, Y. J. Natural Cilia and Pine Needles Combinedly Inspired Asymmetric Pillar Actuators for All-Space Liquid Transport and Self-Regulated Robotic Locomotion. ACS Appl. Mater. Interfaces 2022, 14, 50296–50307.
- 34 Venkataramanachar, B. B.; Li, J. N.; Islam, T. U.; Wang, Y.; den Toonder, J. M. J. Nanomagnetic Elastomers for Realizing Highly Responsive Micro and Nanosystems. Nano Lett. 2023, 23, 9203–9211.
- 35 Wang, T. S.; ul Islam, T.; Steur, E.; Homan, T.; Aggarwal, I.; Onck, P. R.; den Toonder, J. M. J.; Wang, Y. Programmable Metachronal Motion of Closely Packed Magnetic Artificial Cilia. Lab Chip 2024, 24, 1573–1585.
- 36 Singh, H.; Laibinis, P. E.; Hatton, T. A. Synthesis of Flexible Magnetic Nanowires of Permanently Linked Core-Shell Magnetic Beads Tethered to a Glass Surface Patterned by Microcontact Printing. Nano Lett. 2005, 5, 2149–2154.
- 37 Benkoski, J. J.; Deacon, R. M.; Land, H. B.; Baird, L. M.; Breidenich, J. L.; Srinivasan, R.; Clatterbaugh, G. V.; Keng, P. Y.; Pyun, J. Dipolar Assembly of Ferromagnetic Nanoparticles Into Magnetically Driven Artificial Cilia. Soft Matter 2010, 6, 602–609.
- 38 Coq, N.; Bricard, A.; Delapierre, F. D.; Malaquin, L.; du Roure, O.; Fermigier, M.; Bartolo, D. Collective Beating of Artificial Microcilia. Phys. Rev. Lett. 2011, 107, 014501.
- 39 Timonen, J. V. I.; Johans, C.; Kontturi, K.; Walther, A.; Ikkala, O.; Ras, R. H. A. A Facile Template-Free Approach to Magnetodriven, Multifunctional Artificial Cilia. ACS Appl. Mater. Interfaces 2010, 2, 2226–2230.
- 40 Kong, L.; Feng, Y. Z.; Luo, W.; Mou, F. Z.; Ying, K. L.; Pu, Y.; You, M.; Fang, K.; Ma, H. R.; Guan, J. G. Self-Adaptive Magnetic Photonic Nanochain Cilia Arrays. Adv. Funct. Mater. 2020, 30, e2005243.
- 41 Xu, W. J.; Li, X. Y.; Chen, R.; Lin, W. M.; Yuan, D.; Geng, D.; Luo, T.; Zhang, J. H.; Wu, L. J.; Zhou, W. Ordered Magnetic Cilia Array Induced by the Micro-Cavity Effect for the In Situ Adjustable Pressure Sensor. ACS Appl. Mater. Interfaces 2022, 14, 38291–38301.
- 42 Wei, C. Q.; Gendelman, O.; Jiang, Y. H. A Superhydrophobicity-Slipperiness Switchable Surface with Magneto- and Thermo-responsive Wires for Repelling Complex Droplets. Langmuir 2024, 40, 2764–2772.
- 43 Wang, L.; Zhang, C. C.; Wei, Z. J.; Xin, Z. T. Bioinspired Fluoride-Free Magnetic Microcilia Arrays for Anti-Icing and Multidimensional Droplet Manipulation. ACS Nano 2023, 18, 526–538.
- 44 van Oosten, C. L.; Bastiaansen, C. W. M.; Broer, D. J. Printed Artificial Cilia from Liquid-Crystal Network Actuators Modularly Driven by Light. Nat. Mater. 2009, 8, 677–682.
- 45 Belardi, J.; Schorr, N.; Prucker, O.; Rühe, J. Artificial Cilia: Generation of Magnetic Actuators in Microfluidic Systems. Adv. Funct. Mater. 2011, 21, 3314–3320.
- 46 Hanasoge, S.; Ballard, M.; Hesketh, P. J.; Alexeev, A. Asymmetric Motion of Magnetically Actuated Artificial Cilia. Lab Chip 2017, 17, 3138–3145.
- 47 Hanasoge, S.; Hesketh, P. J.; Alexeev, A. Metachronal Actuation of Microscale Magnetic Artificial Cilia. ACS Appl. Mater. Interfaces 2020, 12, 46963–46971.
- 48 Liu, X.; Liang, Q. H.; Zhang, X. C.; Ji, C. Y.; Li, J. F. Nano-Kirigami Enabled Chiral Nano-Cilia with Enhanced Circular Dichroism at Visible Wavelengths. Nanophotonics 2023, 12, 1459–1468.
- 49 Glass, P.; Shar, A.; Pemberton, C.; Nguyen, E.; Park, S. H.; Joung, D. 3D-Printed Artificial Cilia Arrays: A Versatile Tool for Customizable Mechanosensing. Adv. Sci. 2023, 10, 2303164.
- 50 Orbay, S.; Ozcelik, A.; Bachman, H.; Huang, T. J. Acoustic Actuation of in Situfabricated Artificial Cilia. J. Micromech. Microeng. 2018, 28, 025012.
- 51 Shinoda, H.; Azukizawa, S.; Maeda, K.; Tsumori, F. Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles. J. Electrochem. Soc. 2019, 166, B3235–B3239.
- 52 Dai, B.; Li, S. H.; Xu, T. L.; Wang, Y. F.; Zhang, F. L.; Gu, Z.; Wang, S. T. Artificial Asymmetric Cilia Array of Dielectric Elastomer for Cargo Transportation. ACS Appl. Mater. Interfaces 2018, 10, 42979–42984.
- 53 Wang, W.; Liu, Q. K.; Tanasijevic, I.; Reynolds, M. F.; Cortese, A. J.; Miskin, M. Z.; Cao, M. C.; Muller, D. A.; Molnar, A. C.; Lauga, E.; McEuen, P. L.; Cohen, I. Cilia Metasurfaces for Electronically Programmable Microfluidic Manipulation. Nature 2022, 605, 681–686.
- 54 Wang, Y. S.; Sharma, S.; Maldonado, F.; Dong, X. G. Wirelessly Actuated Ciliary Airway Stent for Excessive Mucus Transportation. Adv. Mater. Technol. 2023, 8, e2301003.
- 55 Dillinger, C.; Nama, N.; Ahmed, D. Ultrasound-Activated Ciliary Bands for Microrobotic Systems Inspired by Starfish. Nat. Commun. 2021, 12, 6455.
- 56 Backer, A.; Landskron, J.; Drese, K. S.; Lindner, G. Actuation of Liquid Flow by Guided Acoustic Waves on Punched Steel Tapes with Protruding Loops. J. Bionic Eng. 2021, 18, 534–547.
- 57 Lee, S. H.; Kim, J.; Seong, M.; Kim, S.; Jang, H.; Park, H. W.; Jeong, H. E. Magneto-Responsive Photothermal Composite Cilia for Active Anti-Icing and De-Icing. Compos. Sci. Technol. 2022, 217, 109086.
- 58 Ishikawa, H.; Marshall, W. F. Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 2011, 12, 222–234.
- 59 Lindemann, C. B.; Lesich, K. A. Flagellar and Ciliary Beating: the Proven and the Possible. J. Cell Sci. 2010, 123, 519–528.
- 60 Peerlinck, S.; Milana, E.; De Smet, E.; De Volder, M.; Reynaerts, D.; Gorissen, B. Artificial Cilia-Bridging the Gap with Nature. Adv. Funct. Mater. 2023, 33, 2300856.
- 61 Zhang, C. H.; Xiao, X.; Zhang, Y. H.; Liu, Z. X.; Xiaoi, X.; Nashalian, A.; Wang, X. S.; Cao, M. Y.; He, X. M.; Chen, J.; Jiang, L.; Yu, C. M. Bioinspired Anisotropic Slippery Cilia for Stiffness-Controllable Bubble Transport. ACS Nano 2022, 16, 9348–9358.
- 62 Milana, E.; Zhang, R.; Vetrano, M. R.; Peerlinck, S.; De Volder, M.; Onck, P. R.; Reynaerts, D.; Gorissen, B. Metachronal Patterns in Artificial Cilia for Low Reynolds Number Fluid Propulsion. Sci. Adv. 2020, 6, eabd2508.
- 63 Gu, H.; Lee, S. W.; Carnicelli, J.; Zhang, T.; Ren, D. C. Magnetically Driven Active Topography for Long-Term Biofilm Control. Nat. Commun. 2020, 11, 2211.
- 64 Li, S. C.; Lerch, M. M.; Waters, J. T.; Deng, B. L.; Martens, R. S.; Yao, Y. X.; Kim, D. Y.; Bertoldi, K.; Grinthal, A.; Balazs, A. C.; Aizenberg, J. Self-Regulated Non-Reciprocal Motions in Single-Material Microstructures. Nature 2022, 605, 76–83.
- 65 Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. Nano Micro Lett. 2022, 14, 150.
- 66 Milana, E.; Gorissen, B.; Peerlinck, S.; De Volder, M.; Reynaerts, D. Artificial Soft Cilia with Asymmetric Beating Patterns for Biomimetic Low-Reynolds-Number Fluid Propulsion. Adv. Funct. Mater. 2019, 29, e1900462.
- 67 Wu, Y. H.; Zhang, S.; Yang, Y.; Li, Z.; Wei, Y.; Ji, Y. Locally Controllable Magnetic Soft Actuators with Reprogrammable Contraction-Derived Motions. Sci. Adv. 2022, 8, eabo6021.
- 68 Zhang, Y.; Zhang, F.; Song, Y. Y.; Shen, X. Y.; Bu, F. Q.; Su, D. D.; Luo, C.; Ge, L. Y.; Deng, S. H.; Wu, Z. L.; Zhang, Z. Y.; Duan, P. C.; Li, N.; Min, L.; Zhang, S. D.; Wang, S. T. Interfacial Polymerization Produced Magnetic Particles with Nano-Filopodia for Highly Accurate Liquid Biopsy in the PSA Gray Zone. Adv. Mater. 2023, 35, e2303821.
- 69 Wang, Y. P.; Yang, X. B.; Chen, Y. F.; Wainwright, D. K.; Kenaley, C. P.; Gong, Z. Y.; Liu, Z. M.; Liu, H.; Guan, J.; Wang, T. M.; Weaver, J. C.; Wood, R. J.; Wen, L. A Biorobotic Adhesive Disc for Underwater Hitchhiking Inspired by the Remora Suckerfish. Sci. Rob. 2017, 2, eaan8072.
- 70 Tong, Z. M.; Zhang, S.; Chen, S. F.; Sun, R.; He, P.; Song, L. N.; Hu, J. K.; Hou, Y.; Zhan, X. L.; Zhang, Q. H. Sea Anemone-Inspired Slippery Liquid-Infused Porous Surface (SLIPS) with Bionic Cilia for Responsive 4D Antifouling. Small 2024, 20, e2401658.
- 71 Zhang, W.; Jiang, W.; Zhang, C.; Qin, X. Z.; Zheng, H. X.; Xu, W. H.; Cui, M. M.; Wang, B.; Wu, J. N.; Wang, Z. K. Honeybee Comb-Inspired Stiffness Gradient-Amplified Catapult for Solid Particle Repellency. Nat. Nanotechnol. 2024, 19, 219–225.
- 72 Zhang, T. Z.; Wang, Y. F.; Zhang, F. L.; Chen, X. D.; Hu, G. Q.; Meng, J. X.; Wang, S. T. Bio-Inspired Superhydrophilic Coatings with High Anti-Adhesion Against Mineral Scales. NPG Asia Mater. 2018, 10, e471.
- 73 Zarzar, L. D.; Kim, P.; Aizenberg, J. Bio-Inspired Design of Submerged Hydrogel-Actuated Polymer Microstructures Operating in Response to pH. Adv. Mater. 2011, 23, 1442–1446.
- 74 Liu, J. A.C.; Evans, B. A.; Tracy, J. B. Photothermally Reconfigurable Shape Memory Magnetic Cilia. Adv. Mater. Technol. 2020, 5, e2000147.
- 75 van Raak, R. J. H.; Houben, S. J. A.; Schenning, A. P. H. J.; Broer, D. J. Patterned and Collective Motion of Densely Packed Tapered Multiresponsive Liquid Crystal Cilia. Adv. Mater. Technol. 2022, 7, e2101619.
- 76 Li, M.; Kim, T.; Guidetti, G.; Wang, Y.; Omenetto, F. G. Optomechanically Actuated Microcilia for Locally Reconfigurable Surfaces. Adv. Mater. 2020, 32, e2004147.
- 77 Kim, J.; Yeom, J.; Ro, Y. G.; Na, G.; Jung, W.; Ko, H. Plasmonic Hydrogel Actuators for Octopus-Inspired Photo/Thermoresponsive Smart Adhesive Patch. ACS Nano 2024, 18, 21364–21375.
- 78 Sivasundarampillai, J.; Youssef, L.; Priemel, T.; Mikulin, S.; Eren, E. D.; Zaslansky, P.; Jehle, F.; Harrington, M. J. A Strong Quick-Release Biointerface in Mussels Mediated by Serotonergic Cilia-Based Adhesion. Science 2023, 382, 829–834.
- 79 Cai, Z. M.; Miao, C. Y.; Zhang, C. H.; Luo, H. Y.; Wu, J. G.; Zhao, T. Z.; Yang, H.; Fan, L. S.; Yang, G.; Ouyang, X. P.; Yang, H. Y.; Yao, J. H.; Xu, K. C. Bio-Inspired Hybrid Laser Direct Writing of Interfacial Adhesion for Universal Functional Coatings. Adv. Funct. Mater. 2024, 34, e2408354.
- 80 Arzt, E.; Gorb, S.; Spolenak, R. From Micro to Nano Contacts in Biological Attachment Devices. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 10603–10606.
- 81 Zhang, S. Z.; Zuo, P.; Wang, Y.; Onck, P.; den Toonder, J. M. J. Anti-Biofouling and Self-Cleaning Surfaces Featured with Magnetic Artificial Cilia. ACS Appl. Mater. Interfaces 2020, 12, 27726–27736.
- 82 Zhang, S.; Wang, Y.; Onck, P. R.; den Toonder, J. M. J. Removal of Microparticles by Ciliated Surfaces—an Experimental Study. Adv. Funct. Mater. 2019, 29, e1806434.
- 83 Cui, Z. W.; Zhang, S. Z.; Wang, Y.; Tormey, L.; Kanies, O. S.; Spero, R. C.; Fisher, J. K.; den Toonder, J. M. J. Self-Cleaning Surfaces Realized by Biologically Sized Magnetic Artificial Cilia. Adv. Mater. Interfaces 2022, 9, e2102016.
- 84 Wu, Q. S.; Yan, H.; Chen, L.; Qi, S. H.; Zhao, T. Y.; Jiang, L.; Liu, M. J. Bio-Inspired Active Self-Cleaning Surfaces via Filament-Like Sweepers Array. Adv. Mater. 2023, 35, e2212246.
- 85 Lee, S. H.; Seong, M.; Kwak, M. K.; Ko, H.; Kang, M.; Park, H. W.; Kang, S. M.; Jeong, H. E. Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array. ACS Nano 2018, 12, 10693–10702.
- 86 Zhang, S. Z.; Zhang, R. J.; Wang, Y.; Onck, P. R.; den Toonder, J. M. J. Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia. ACS Nano 2020, 14, 10313–10323.
- 87 Saberi, A.; Zhang, S. Z.; van den Bersselaar, C.; Kandail, H.; den Toonder, J. M. J.; Kurniawan, N. A. A Stirring System Using Suspended Magnetically-Actuated Pillars for Controlled Cell Clustering. Soft Matter 2019, 15, 1435–1443.
- 88 Zhang, T. Z.; Wang, Y. F.; Dai, B.; Xu, T. L. Bioinspired Transport Surface Driven by Air Flow. Adv. Mater. Interfaces 2020, 7, e2001331.
- 89 Zhao, H. B.; Park, S. J.; Solomon, B. R.; Kim, S.; Soto, D.; Paxson, A. T.; Varanasi, K. K.; Hart, A. J. Synthetic Butterfly Scale Surfaces with Compliance-Tailored Anisotropic Drop Adhesion. Adv. Mater. 2019, 31, e1807686.
- 90 Dai, H. Y.; Dong, Z. C.; Jiang, L. Directional Liquid Dynamics of Interfaces with Superwettability. Sci. Adv. 2020, 6, eabb5528.
- 91 Zurek, D. B.; Gorb, S. N.; Voigt, D. Changes in Tarsal Morphology and Attachment Ability to Rough Surfaces During Ontogenesis in the Beetle Gastrophysa viridula (Coleoptera, Chrysomelidae). Arthropod Struct. Dev. 2017, 46, 130–137.
- 92 Alapan, Y.; Yasa, O.; Schauer, O.; Giltinan, J.; Tabak, A. F.; Sourjik, V.; Sitti, M. Soft Erythrocyte-Based Bacterial Microswimmers for Cargo Delivery. Sci. Rob. 2018, 3, eaar4423.
- 93 Kim, S.; Hsiao, Y. H.; Chen, Y.; Mao, J.; Chen, Y. FireFly: An Insect- Scale Aerial Robot Powered by Electroluminescent Soft Artificial Muscles. IEEE Rob. Autom. Lett. 2022, 7, 6950–6957.
- 94 Gilpin, W.; Prakash, V. N.; Prakash, M. Vortex Arrays and Ciliary Tangles Underlie the Feeding-Swimming Trade-Off in Starfish Larvae. Nat. Phys. 2017, 13, 380–386.
- 95 Kim, S.; Lee, S.; Lee, J.; Nelson, B. J.; Zhang, L.; Choi, H. Fabrication and Manipulation of Ciliary Microrobots with Non-Reciprocal Magnetic Actuation. Sci. Rep. 2016, 6, 30713.
- 96 Gu, H. R.; Boehler, Q.; Cui, H. Y.; Secchi, E.; Savorana, G.; De Marco, C.; Gervasoni, S.; Peyron, Q.; Huang, T. Y.; Pane, S.; Hirt, A. M.; Ahmed, D.; Nelson, B. J. Magnetic Cilia Carpets with Programmable Metachronal Waves. Nat. Commun. 2020, 11, 2637.
- 97 Wang, X.; Yang, B. S.; Tan, D.; Li, Q.; Song, B.; Wu, Z. S.; del Campo, A.; Kappl, M.; Wang, Z. K.; Gorb, S. N.; Liu, S.; Xue, L. J. Bioinspired Footed Soft Robot with Unidirectional All-Terrain Mobility. Mater. Today 2020, 35, 42–49.
- 98 Liu, Y. F.; Fu, Y. F.; Li, Y. Q.; Huang, P.; Xu, C. H.; Hu, N.; Fu, S. Y. Bio-Inspired Highly Flexible Dual-Mode Electronic Cilia. J. Mater. Chem. B 2018, 6, 896–902.
- 99 Zhou, Q.; Ji, B.; Hu, F. M.; Dai, Z. Y.; Ding, S.; Yang, H.; Zhong, J. W.; Qiao, Y. C.; Zhou, J. H.; Luo, J. Y.; Zhou, B. P. Magnetized Microcilia Array-Based Self-Powered Electronic Skin for Micro-Scaled 3D Morphology Recognition and High-Capacity Communication. Adv. Funct. Mater. 2022, 32, e2208120.
- 100 Engel, J. M.; Chen, J.; Liu, C.; Bullen, D. Polyurethane Rubber All-Polymer Artificial Hair Cell Sensor. J. Microelectromech. Syst. 2006, 15, 729–736.
- 101 Hudspeth, A. J. Integrating the Active Process of Hair Cells with Cochlear Function. Nat. Rev. Neurosci. 2014, 15, 600–614.
- 102 May-Simera, H. L.; Wan, Q.; Jha, B. S.; Hartford, J.; Khristov, V.; Dejene, R.; Chang, J.; Patnaik, S.; Lu, Q. L.; Banerjee, P.; Silver, J.; Insinna-Kettenhofen, C.; Patel, D.; Lotfi, M.; Malicdan, M.; Hotaling, N.; Maminishkis, A.; Sridharan, R.; Brooks, B.; Miyagishima, K.; Gunay-Aygun, M.; Pal, R.; Westlake, C.; Miller, S.; Sharma, R.; Bharti, K. Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells. Cell Rep. 2018, 22, 189–205.
- 103 Wang, Q.; Lu, Z.; Wang, D.; Wang, K. Mechanosensor for Proprioception Inspired by Ultrasensitive Trigger Hairs of Venus Flytrap. Cyborg Bionic Syst. 2024, 5, 0065.
- 104 Fan, Z.; Chen, J.; Zou, J.; Bullen, D.; Liu, C.; Delcomyn, F. Design and Fabrication of Artificial Lateral Line Flow Sensors. J. Micromech. Microeng. 2002, 12, 655–661.
- 105 Man, J. D.; Jin, Z. H.; Chen, J. M. Magnetic Tactile Sensor with Bionic Hair Array for Sliding Sensing and Object Recognition. Adv. Sci. 2024, 11, 2306832.
- 106 Lenk, C.; Hövel, P.; Ved, K.; Durstewitz, S.; Meurer, T.; Fritsch, T.; Männchen, A.; Küller, J.; Beer, D.; Ivanov, T.; Ziegler, M. Neuromorphic Acoustic Sensing Using an Adaptive Microelectromechanical Cochlea with Integrated Feedback. Nat. Electron. 2023, 6, 370–380.
- 107 McGary, P. D.; Tan, L.; Zou, J.; Stadler, B. J. H.; Downey, P. R.; Flatau, A. B. Magnetic Nanowires for Acoustic Sensors (Invited). J. Appl. Phys. 2006, 99, 08B310
- 108 He, Q.; Wu, Y. F.; Feng, Z. P.; Sun, C. C.; Fan, W. J.; Zhou, Z. H.; Meng, K. Y.; Fan, E. D.; Yang, J. Triboelectric Vibration Sensor for a Human- Machine Interface Built on Ubiquitous Surfaces. Nano Energy 2019, 59, 689–696.
- 109 Whiting, J. G. H.; Mayne, R.; Melhuish, C.; Adamatzky, A. A Cilia-Inspired Closed-Loop Sensor-Actuator Array. J. Bionic Eng. 2018, 15, 526–532.
- 110 Jiang, S. J.; Hu, Y. L.; Wu, H.; Zhang, Y. C.; Zhang, Y. Y.; Wang, Y. L.; Zhang, Y. H.; Zhu, W. L.; Li, J. W.; Wu, D.; Chu, J. R. Multifunctional Janus Microplates Arrays Actuated by Magnetic Fields for Water/ Light Switches and Bio-Inspired Assimilatory Coloration. Adv. Mater. 2019, 31, e1807507.
- 111 Zhang, X. S.; Hou, K.; Sun, Y. Q.; Zhang, Z. S.; Long, Y.; Song, K. Bioinspired Microplate Arrays for Magnetically Tuned Dynamic Color. Adv. Opt. Mater. 2022, 10, e2200763.