Regularly Tuning Quantum Interference in Single-Molecule Junctions through Systematic Substitution of Side Groups with Varied Electron Effects†
Xianjing Xie
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
Thess authors contributed equally.
†Dedicated to the Special Issue of Emerging Investigators in 2023.
Search for more papers by this authorYirong Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Thess authors contributed equally.
†Dedicated to the Special Issue of Emerging Investigators in 2023.
Search for more papers by this authorJunrui Zhang
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
Thess authors contributed equally.
†Dedicated to the Special Issue of Emerging Investigators in 2023.
Search for more papers by this authorXingyuan Cui
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorCorresponding Author
Wei Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Xunshan Liu
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXianjing Xie
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
Thess authors contributed equally.
†Dedicated to the Special Issue of Emerging Investigators in 2023.
Search for more papers by this authorYirong Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 China
Thess authors contributed equally.
†Dedicated to the Special Issue of Emerging Investigators in 2023.
Search for more papers by this authorJunrui Zhang
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
Thess authors contributed equally.
†Dedicated to the Special Issue of Emerging Investigators in 2023.
Search for more papers by this authorXingyuan Cui
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorCorresponding Author
Wei Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Xunshan Liu
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou, Zhejiang, 310018 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Investigating the quantum interference effect in single molecules is essential to comprehensively understand the underlying mechanism of single-molecule charge transport. In this study, we employed the mother molecule m-OPE and introduced a series of side groups with various electronic effects at the 2-position of the central phenyl ring, creating four daughter m-OPE derivatives. The single molecular conductivities of these molecule wires were measured using the scanning tunneling microscope breaking junction technique. Our findings demonstrate that the substitutions regularly modulate the destructive quantum interference occurring within the m-OPE molecules. By combining optical and electrochemical investigations, along with density functional theory computations, we discover that the conductivity of the molecules corresponds to the electron-donating/withdrawing ability of the substituents. Specifically, by adjusting the electron structures of the molecular backbone, we can systematically tailor the destructive quantum interference in the m-OPE molecules.
Supporting Information
Filename | Description |
---|---|
cjoc202300706-sup-0001-Supinfo.pdfPDF document, 2.1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Nitzan, A.; Ratner, M. A. Electron Transport in Molecular Wire Junctions. Science 2003, 300, 1384–1389.
- 2 Tang, C.; Jiang, X.-L.; Chen, S.; Hong, W.; Li, J.; Xia, H. Stereoelectronic Modulation of a Single-Molecule Junction through a Tunable Metal–Carbon dπ–pπ Hyperconjugation. J. Am. Chem. Soc. 2023, 145, 10404–10410.
- 3 Homma, K.; Kaneko, S.; Tsukagoshi, K.; Nishino, T. Dependence of Charge Transfer on the Adsorption Site at Metal–Molecule Interfaces: Implications for Single-Molecule Electronic Devices. ACS. Appl. Nano Mater. 2023, 6, 8135–8140.
- 4[4] Fan, Y.; Pitie, S.; Liu, C.; Zhao, C.; Zhao, C.; Seydou, M.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Asymmetric Effect on the Length Dependence of Oligo(Phenylene ethynylene)-Based Molecular Junctions. J. Phys. Chem. C 2022, 126, 3635–3645.
- 5 Zhang, Q.; Zheng, X.; Kuang, G.; Wang, W.; Zhu, L.; Pang, R.; Shi, X.; Shang, X.; Huang, X.; Liu, P. N.; Lin, N. Single-Molecule Investigations of Conformation Adaptation of Porphyrins on Surfaces. J. Phys. Chem. Lett. 2017, 8, 1241–1247.
- 6 Almughathawi, R.; Hou, S.; Wu, Q.; Liu, Z.; Hong, W.; Lambert, C. Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives. ACS Sens. 2021, 6, 470–476.
- 7 Tsuji, Y.; Stuyver, T.; Gunasekaran, S.; Venkataraman, L. The Influence of Linkers on Quantum Interference: A Linker Theorem. J. Phys. Chem. C 2017, 121, 14451–14462.
- 8 Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical Principles of Single-Molecule Electronics. Nat. Rev. Mater. 2016, 1, 16002.
- 9 Li, S.; Yu, H.; Chen, X.; Gewirth, A. A.; Moore, J. S.; Schroeder, C. M. Covalent Ag–C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions. Nano Lett. 2020, 20, 5490–5495.
- 10 Yasini, P.; Afsari, S.; Peng, H.; Pikma, P.; Perdew, J. P.; Borguet, E. Potential-Induced High-Conductance Transport Pathways through Single-Molecule Junctions. J. Am. Chem. Soc. 2019, 141, 10109–10116.
- 11 Wang, H.; Wang, Z.; Wang, Y.; Hihath, J.; Chen, H.-Y.; Li, Y.; Tao, N. Potential Dependence of Mechanical Stability and Electronic Coupling of Single S–Au Bonds. J. Am. Chem. Soc. 2018, 140, 18074–18081.
- 12 Li, H. B.; Xi, Y.-F.; Hong, Z.-W.; Yu, J.; Li, X.-X.; Liu, W.-X.; Domulevicz, L.; Jin, S.; Zhou, X.-S.; Hihath, J. Temperature-Dependent Tunneling in Furan Oligomer Single-Molecule Junctions. ACS Sens. 2021, 6, 565–572.
- 13 Kamenetska, M.; Widawsky, J. R.; Dell, Angela, M.; Frei, M.; Venkataraman, L. Temperature Dependent Tunneling Conductance of Single Molecule Junctions. J. Chem. Phys. 2017, 146, 92311.
- 14 Zou, Q.; Chen, X.; Zhou, Y.; Jin, X.; Zhang, Z.; Qiu, J.; Wang, R.; Hong, W.; Su, J.; Qu, D.-H.; Tian, H. Photoconductance from the Bent-to- Planar Photocycle between Ground and Excited States in Single- Molecule Junctions. J. Am. Chem. Soc. 2022, 144, 10042–10052.
- 15 Soni, S.; Ye, G.; Zheng, J.; Zhang, Y.; Asyuda, A.; Zharnikov, M.; Hong, W.; Chiechi, R. C. Understanding the Role of Parallel Pathways via In-Situ Switching of Quantum Interference in Molecular Tunneling Junctions. Angew. Chem. Int. Ed. 2020, 59, 14308–14312.
- 16 Baghernejad, M.; Van Dyck, C.; Bergfield, J.; Levine, D. R.; Gubicza, A.; Tovar, J. D.; Calame, M.; Broekmann, P.; Hong, W. Quantum Interference Enhanced Chemical Responsivity in Single-Molecule Dithienoborepin Junctions. Chem. Eur. J. 2019, 25, 15141–15146.
- 17 Zhu, Y.; Zhou, Y.; Ren, L.; Ye, J.; Wang, H.; Liu, X.; Huang, R.; Liu, H.; Liu, J.; Shi, J.; Gao, P.; Hong, W. Switching Quantum Interference in Single-Molecule Junctions by Mechanical Tuning. Angew. Chem. Int. Ed. 2023, 62, e202302693.
- 18 Li, P.; Hou, S.; Alharbi, B.; Wu, Q.; Chen, Y.; Zhou, L.; Gao, T.; Li, R.; Yang, L.; Chang, X.; Dong, G.; Liu, X.; Decurtins, S.; Liu, S.-X.; Hong, W.; Lambert, C. J.; Jia, C.; Guo, X. Quantum Interference-Controlled Conductance Enhancement in Stacked Graphene-like Dimers. J. Am. Chem. Soc. 2022, 144, 15689–15697.
- 19 Alqahtani, J.; Sangtarash, S.; Sadeghi, H. Influence of Environmental Fluctuations on Quantum Interference in Naphthalene and Azulene. Small Sci. 2023, 3, 2300075.
- 20 Homma, K.; Kaneko, S.; Tsukagoshi, K.; Nishino, T. Intermolecular and Electrode-Molecule Bonding in a Single Dimer Junction of Naphthalenethiol as Revealed by Surface-Enhanced Raman Scattering Combined with Transport Measurements. J. Am. Chem. Soc. 2023, 145, 15788–15795.
- 21 Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Inkpen, M. S.; Lovat, G.; Fung, E. D.; Roy, X.; Venkataraman, L.; Evers, F. Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. Nano Lett. 2020, 20, 6381–6386.
- 22 Tang, C.; Chen, L.; Zhang, L.; Chen, Z.; Li, G.; Yan, Z.; Lin, L.; Liu, J.; Huang, L.; Ye, Y.; Hua, Y.; Shi, J.; Xia, H.; Hong, W. Multicenter-Bond-Based Quantum Interference in Charge Transport through Single-Molecule Carborane Junctions. Angew. Chem. Int. Ed. 2019, 58, 10601–10605.
- 23 Zhang, Y.-P.; Chen, L.-C.; Zhang, Z.-Q.; Cao, J.-J.; Tang, C.; Liu, J.; Duan, L.-L.; Huo, Y.; Shao, X.; Hong, W.; Zhang, H.-L. Distinguishing Diketopyrrolopyrrole Isomers in Single-Molecule Junctions via Reversible Stimuli-Responsive Quantum Interference. J. Am. Chem. Soc. 2018, 140, 6531–6535.
- 24 Li, S.; Yu, H.; Schwieter, K.; Chen, K.; Li, B.; Liu, Y.; Moore, J. S.; Schroeder, C. M. Charge Transport and Quantum Interference Effects in Oxazole-Terminated Conjugated Oligomers. J. Am. Chem. Soc. 2019, 141, 16079–16084.
- 25 Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; Liu, J.; Yang, Y.; Shi, J.; Mészáros, G.; Chen, W.; Lambert, C.; Hong, W. Anti-Resonance Features of Destructive Quantum Interference in Single-Molecule Thiophene Junctions Achieved by Electrochemical Gating. Nat. Mater. 2019, 18, 364–369.
- 26 Liu, X.; Sangtarash, S.; Reber, D.; Zhang, D.; Sadeghi, H.; Shi, J.; Xiao, Z.-Y.; Hong, W.; Lambert, C. J.; Liu, S.-X. Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution. Angew. Chem. Int. Ed. 2017, 56, 173–176.
- 27 Darwish, N.; Díez-Pérez, I.; Da Silva, P.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Observation of Electrochemically Controlled Quantum Interference in a Single Anthraquinone-Based Norbornylogous Bridge Molecule. Angew. Chem. Int. Ed. 2012, 51, 3203–3206.
- 28 Markussen, T.; Stadler, R.; Thygesen, K. S. The Relation between Structure and Quantum Interference in Single Molecule Junctions. Nano Lett. 2010, 10, 4260–4265.
- 29 Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; Al-Owaedi, O. A.; Sadeghi, H.; Kaliginedi, V.; Hong, W.; Gulcur, M.; Wandlowski, T.; Bryce, M. R.; Lambert, C. J. A Quantum Circuit Rule for Interference Effects in Single-Molecule Electrical Junctions. Nat. Commun. 2015, 6, 6389.
- 30 Geng, Y.; Sangtarash, S.; Huang, C.; Sadeghi, H.; Fu, Y.; Hong, W.; Wandlowski, T.; Decurtins, S.; Lambert, C. J.; Liu, S.-X. Magic Ratios for Connectivity-Driven Electrical Conductance of Graphene-like Molecules. J. Am. Chem. Soc. 2015, 137, 4469-4476.
- 31 Valkenier, H.; Guédon, C. M.; Markussen, T.; Thygesen, K. S.; Van der Molen, S. J.; Hummelen, J. C. Cross-Conjugation and Quantum Interference: A General Correlation? Phys. Chem. Chem. Phys. 2014, 16, 653–662.
- 32 Yang, Y.; Gantenbein, M.; Alqorashi, A.; Wei, J.; Sangtarash, S.; Hu, D.; Sadeghi, H.; Zhang, R.; Pi, J.; Chen, L.; Huang, X.; Li, R.; Liu, J.; Shi, J.; Hong, W.; Lambert, C. J.; Bryce, M. R. Heteroatom-Induced Molecular Asymmetry Tunes Quantum Interference in Charge Transport through Single-Molecule Junctions. J. Phys. Chem. C 2018, 122, 14965–14970.
- 33 Zhang, Y.; Ye, G.; Soni, S.; Qiu, X.; Krijger, T. L.; Jonkman, H. T.; Carlotti, M.; Sauter, E.; Zharnikov, M.; Chiechi, R. C. Controlling Destructive Quantum Interference in Tunneling Junctions Comprising Self-assembled Monolayers via Bond Topology and Functional Groups. Chem. Sci. 2018, 9, 4414-4423.
- 34 Jiang, F.; Trupp, D. I.; Algethami, N.; Zheng, H.; He, W.; Alqorashi, A.; Zhu, C.; Tang, C.; Li, R.; Liu, J.; Sadeghi, H.; Shi, J.; Davidson, R.; Korb, M.; Sobolev, A. N.; Naher, M.; Sangtarash, S.; Low, P. J.; Hong, W.; Lambert, C. J. Turning the Tap: Conformational Control of Quantum Interference to Modulate Single-Molecule Conductance. Angew. Chem. Int. Ed. 2019, 58, 18987–18993.
- 35 Zhang, L.; Zhang, Z.; Liang, H.; Guo, X.; Zhang, M. A Non-Halogenated Polymer Donor Based on Imide Unit for Organic Solar Cells with Efficiency Nearly 16%. Chin. J. Chem. 2023, 41, 2095–2102.
- 36 Li, J.; Hou, S.; Yao, Y.-R.; Zhang, C.; Wu, Q.; Wang, H.-C.; Zhang, H.; Liu, X.; Tang, C.; Wei, M.; Xu, W.; Wang, Y.; Zheng, J.; Pan, Z.; Kang, L.; Liu, J.; Shi, J.; Yang, Y.; Lambert, C. J.; Xie, S.-Y.; Hong, W. Room- Temperature Logic-in-Memory Operations in Single-Metallofullerene devices. Nat. Mater. 2022, 21, 917–923.
- 37 Xu, B.; Tao, N. J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221–1223.
- 38 Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of Single-Molecule Junction Conductance on Molecular Conformation. Nature 2006, 442, 904–907.
- 39 Pan, Z.; Dong, G.; Shang, C.; Li, R.; Gao, T.; Lin, L.; Duan, H.; Li, X.; Bai, J.; Lai, Y.; Wu, W.; Shi, J.; Liu, J.; Hong, W. XMe - Xiamen Molecular Electronics Code: An Intelligent and Open-Source Data Analysis Tool for Single-Molecule Conductance Measurements. Chin. J. Chem. 2023, 42, 317–329.
- 40 Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-Functional Method for Nonequilibrium Electron Transport. Phys. Rev. B 2002, 65, 165401.
- 41 Neaton, J. B.; Hybertsen, M. S.; Louie, S. G. Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces. Phys. Rev. Lett. 2006, 97, 216405.
- 42 Zhao, Z. H.; Wang, L.; Li, S.; Zhang, W. D.; He, G.; Wang, D.; Hou, S. M.; Wan, L. J. Single-Molecule Conductance through an Isoelectronic B-N Substituted Phenanthrene Junction. J. Am. Chem. Soc. 2020, 142, 8068–8073.
- 43 Mowbray, D. J.; Jones, G.; Thygesen, K. S. Influence of Functional Groups on Charge Transport in Molecular Junctions. J. Chem. Phys. 2008, 128, 111103.
- 44 Quek, S. Y.; Venkataraman, L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B. Amine-Gold Linked Single-Molecule Circuits: Experiment and Theory. Nano Lett. 2007, 7, 3477–3482.
- 45 Becke, A. D. Density-functional thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.