Nickel-Catalyzed Stereoselective Migratory Carboboration of 1,4-Cyclohexadiene†
Yaoyu Ren
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorLujin Wang
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorChao Ding
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Yangyang Li
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guoyin Yin
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYaoyu Ren
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorLujin Wang
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorChao Ding
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Yangyang Li
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guoyin Yin
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]; [email protected]Search for more papers by this author†Dedicated to the Memory of Professor Xiyan Lu.
Comprehensive Summary
Multi-substituted cyclohexanes play a crucial role as scaffolds in bioactive compounds. While significant progress has been made in synthesizing substituted cyclohexanes, methods for the stereoselective assembly of 1,3-disubstituted cyclohexanes remain scarce. This study presents a novel approach involving nickel catalysis to achieve stereoselective carboboration of 1,4-cyclohexadiene. This innovative process allows for the simultaneous introduction of a boron group and an aryl or an alkyl fragment into the 1,4-cyclohexadiene framework under mild conditions, with exclusive regioselectivity and excellent cis configuration. The resulting products feature a double carbon bond and the incorporation of the boron group, offering significant potential for subsequent transformations and downstream applications.
Supporting Information
Filename | Description |
---|---|
cjoc202300503-sup-0001-Supinfo.pdfPDF document, 7.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Sauer, W. H.; Schwarz, M. K. Molecular Shape Diversity of Combinatorial Libraries: A Prerequisite for Broad Bioactivity. J. Chem. Inf. Comput. Sci. 2003, 43, 987–1003; (b) Lovering, F.; Bikker, J.; Humblet, C. Escape From Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756; (c) Ishikawa, M.; Hashimoto, Y. Improvement in Aqueous Solubility in Small Molecule Drug Discovery Programs by Disruption of Molecular Planarity and Symmetry. J. Med. Chem. 2011, 54, 1539–1554; (d) Subbaiah, M. A. M.; Meanwell, N. A. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J. Med. Chem. 2021, 64, 14046–14128; (e) Epplin, R. C.; Paul, S.; Herter, L.; Salome, C.; Hancock, E. N.; Larrow, J. F.; Baum, E. W.; Dunstan, D. R.; Ginsburg-Moraff, C.; Fessard, T. C.; Brown, M. K. [2]-Ladderanes as Isosteres for Meta-substituted Aromatic Rings and Rigidified Cyclohexanes. Nat. Commun. 2022, 13, 6056–6061; (f) Dong, W.; Yen-Pon, E.; Li, L.; Bhattacharjee, A.; Jolit, A.; Molander, G. A. Exploiting the sp2 Character of Bicyclo[1.1.1]Pentyl Radicals in the Transition-Metal-Free Multi-Component Difunctionalization of [1.1.1]Propellane. Nat. Chem. 2022, 14, 1068–1077; (g) Frank, N.; Nugent, J.; Shire, B. R.; Pickford, H. D.; Rabe, P.; Sterling, A. J.; Zarganes-Tzitzikas, T.; Grimes, T.; Thompson, A. L.; Smith, R. C.; Schofield, C. J.; Brennan, P. E.; Duarte, F.; Anderson, E. A. Synthesis of Meta-Substituted Arene Bioisosteres from [3.1.1]Propellane. Nature 2022, 611, 721–726.
- 2(a) Jefferies, P. R.; Gengo, P. J.; Watson, M. J.; Casida, J. E. Ryanodine Action at Calcium Release Channels. 2. Relation to Substituents of the Cyclohexane Ring. J. Med. Chem. 1996, 39, 2339–2346; (b) Zhang, X.; Hou, C.; Hufnagel, H.; Singer, M.; Opas, E.; McKenney, S.; Johnson, D.; Sui, Z. Discovery of a 4-Azetidinyl-1-thiazoyl-cyclohexane CCR2 Antagonist as a Development Candidate. ACS Med. Chem. Lett. 2012, 3, 1039–1044; (c) Thomas, J. B.; Giddings, A. M.; Wiethe, R. W.; Olepu, S.; Warner, K. R.; Sarret, P.; Gendron, L.; Longpre, J. M.; Zhang, Y.; Runyon, S. P.; Gilmour, B. P. Identification of 1-([1-(4-Fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonylamino)cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound. J. Med. Chem. 2014, 57, 5318–5332; (d) Aguilar, A.; Lu, J.; Liu, L.; Du, D.; Bernard, D.; McEachern, D.; Przybranowski, S.; Li, X.; Luo, R.; Wen, B.; Sun, D.; Wang, H.; Wen, J.; Wang, G.; Zhai, Y.; Guo, M.; Yang, D.; Wang, S. Discovery of 4-((3'R,4'S,5'R)-6”-Chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2”-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3”-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development. J. Med. Chem. 2017, 60, 2819–2839; (e) Pero, J. E.; McAtee, J. J.; Behm, D. J.; Briand, J.; Graczyk-Millbrandt, G.; Erhard, K.; Roberts, A. D.; Rivero, R. A.; Holt, D. A.; Lawhorn, B. G. Identification, Synthesis, and Characterization of a Major Circulating Human Metabolite of TRPV4 Antagonist GSK2798745. ACS Med. Chem. Lett. 2021, 12, 1498–1502.
- 3(a) Barral, K.; Courcambeck, J.; Pepe, G.; Balzarini, J.; Neyts, J.; De Clercq, E.; Camplo, M. Synthesis and Antiviral Evaluation of cis-Substituted Cyclohexenyl and Cyclohexanyl Nucleosides. J. Med. Chem. 2005, 48, 450–456; (b) Wen, P.; Vetvicka, V.; Crich, D. Synthesis and Evaluation of Oligomeric Thioether-Linked Carbacyclic beta-(1-->3)- Glucan Mimetics. J. Org. Chem. 2019, 84, 5554–5563; (c) Palin, R.; Abernethy, L.; Ansari, N.; Cameron, K.; Clarkson, T.; Dempster, M.; Dunn, D.; Easson, A. M.; Edwards, D.; Maclean, J.; Everett, K.; Feilden, H.; Ho, K. K.; Kultgen, S.; Littlewood, P.; McArthur, D.; McGregor, D.; McLuskey, H.; Neagu, I.; Neale, S.; Nisbet, L. A.; Ohlmeyer, M.; Pham, Q.; Ratcliffe, P.; Rong, Y.; Roughton, A.; Sammons, M.; Swanson, R.; Tracey, H.; Walker, G. Structure-Activity Studies of a Novel Series of Isoxazole-3-Carboxamide Derivatives as TRPV1 Antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 892–898; (d) Caldwell, J. P.; Mazzola, R. D.; Durkin, J.; Chen, J.; Chen, X.; Favreau, L.; Kennedy, M.; Kuvelkar, R.; Lee, J.; McHugh, N.; McKittrick, B.; Orth, P.; Stamford, A.; Strickland, C.; Voigt, J.; Wang, L.; Zhang, L.; Zhang, Q.; Zhu, Z. Discovery of Potent Iminoheterocycle BACE1 Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 5455–5459; (e) Jang, K.; Kim, M. K.; Oh, J.; Lee, S.; Cho, J. Y.; Yu, K. S.; Choi, T. K.; Lee, S. H.; Lim, K. S. Effects of Dexamethasone Coadministered with Oseltamivir on the Pharmacokinetics of Oseltamivir in Healthy Volunteers. Drug Des. Devel. Ther. 2017, 11, 705–711.
- 4(a) Jiang, X.; Wang, R. Recent Developments in Catalytic Asymmetric Inverse-electron-demand Diels-Alder Reaction. Chem. Rev. 2013, 113, 5515–5546; (b) Reymond, S.; Cossy, J. Copper-Catalyzed Diels-Alder Reactions. Chem. Rev. 2008, 108, 5359-5406; (c) Wang, D.-S.; Chen, Q.-A.; Lu, S. M.; Zhou, Y.-G. Asymmetric Hydrogenation of Heteroarenes and Arenes. Chem. Rev. 2012, 112, 2557–2590; (d) Julia, F.; Constantin, T.; Leonori, D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem. Rev. 2022, 122, 2292–2352.
- 5(a) Mu, X.; Shibata, Y.; Makida, Y.; Fu, G. C. Control of Vicinal Stereocenters through Nickel-Catalyzed Alkyl-Alkyl Cross-Coupling. Angew. Chem. Int. Ed 2017, 56, 5821–5824; (b) Li, J.; Ren, Q.; Cheng, X.; Karaghiosoff, K.; Knochel, P. Chromium(II)-Catalyzed Diastereoselective and Chemoselective Csp2-Csp3 Cross-Couplings Using Organomagnesium Reagents. J. Am. Chem. Soc. 2019, 141, 18127–18135; (c) Huo, H.; Gorsline, B. J.; Fu, G. C. Catalyst-Controlled Doubly Enantioconvergent Coupling of Racemic Alkyl Nucleophiles and Electrophiles. Science 2020, 367, 559–564; (d) Fazekas, T. J.; Alty, J. W.; Neidhart, E. K.; Miller, A. S.; Leibfarth, F. A.; Alexanian, E. J. Diversification of Aliphatic C-H Bonds in Small Molecules and Polyolefins through Radical Chain Transfer. Science 2022, 375, 545–550.
- 6(a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction. J. Am. Chem. Soc. 2000, 122, 4243–4244; (b) Molloy, J. J.; Seath, C. P.; West, M. J.; McLaughlin, C.; Fazakerley, N. J.; Kennedy, A. R.; Nelson, D. J.; Watson, A. J. B. Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch. J. Am. Chem. Soc. 2018, 140, 126–130; (c) Liu, Z.-Y.; Zhang, M.; Wang, X.-C. Hydrosilylation-Promoted Furan Diels-Alder Cycloadditions with Stereoselectivity Controlled by the Silyl Group. J. Am. Chem. Soc. 2020, 142, 581–588; (d) Zhu, X. Q.; Wang, Q.; Zhu, J. Organocatalytic Enantioselective Diels-Alder Reaction of 2-Trifluoroacetamido-1,3-dienes with α,β-Unsaturated Ketones. Angew. Chem. Int. Ed. 2023, 62, e202214925.
- 7(a) Besson, M.; Neto, S.; Pinel, C. Diastereoselective Hydrogenation of o-Toluic Acid Derivatives over Supported Rhodium and Ruthenium Heterogeneous Catalysts. Chem. Commun. 1998, 1431–1432; (b) Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All-cis-(multi)fluorinated Cycloalkanes. Science 2017, 357, 908–912; (c) Ling, L.; He, Y.; Zhang, X.; Luo, M.; Zeng, X. Hydrogenation of (Hetero)aryl Boronate Esters with a Cyclic (Alkyl)(amino)carbene-Rhodium Complex: Direct Access to cis-Substituted Borylated Cycloalkanes and Saturated Heterocycles. Angew. Chem. Int. Ed. 2019, 58, 6554–6558; (d) Kaithal, A.; Wagener, T.; Bellotti, P.; Daniliuc, C. G.; Schlichter, L.; Glorius, F. Access to Unexplored 3D Chemical Space: cis-Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew. Chem. Int. Ed. 2022, 61, e202206687; (e) Ding, Y. X.; Zhu, Z. H.; Chen, M. W.; Yu, C. B.; Zhou, Y. G. Rhodium-Catalyzed Asymmetric Hydrogenation of All- Carbon Aromatic Rings. Angew. Chem. Int. Ed 2022, 61, e202205623.
- 8(a) Seki, A.; Takahashi, Y.; Miyake, T. Synthesis of Cis-3-Arylated Cycloalkylamines through Palladium-Catalyzed Methylene sp3 Carbon–Hydrogen Bond Activation. Tetrahedron Lett. 2014, 55, 2838–2841; (b) Van Steijvoort, B. F.; Kaval, N.; Kulago, A. A.; Maes, B. U. W. Remote Functionalization: Palladium-Catalyzed C5(sp3)-H Arylation of 1-Boc-3-aminopiperidine through the Use of a Bidentate Directing Group. ACS Catal. 2016, 6, 4486–4490; (c) Zhao, J.; Zhao, X. J.; Cao, P.; Liu, J. K.; Wu, B. Polycyclic Azetidines and Pyrrolidines via Palladium-Catalyzed Intramolecular Amination of Unactivated C(sp3)-H Bonds. Org. Lett. 2017, 19, 4880–4883; (d) Kang, G.; Strassfeld, D. A.; Sheng, T.; Chen, C.-Y.; Yu, J.-Q. Transannular C-H Functionalization of Cycloalkane Carboxylic Acids. Nature 2023, 618, 519–525.
- 9 Kong, W.; Bao, Y.; Lu, L.; Han, Z.; Zhong, Y.; Zhang, R.; Li, Y.; Yin, G. Base-Modulated 1,3-Regio- and Stereoselective Carboboration of Cyclohexenes. Angew. Chem. Int. Ed. 2023, e202308041.
- 10(a) Brown, H. C.; Bhat, K. S. Hydroboration. 77. Hydroboration of Cyclic Dienes with Representative Hydroborating Agents. J. Org. Chem. 2002, 51, 445–449;
10.1021/jo00354a005 Google Scholar(b) Keess, S.; Oestreich, M. Access to Fully Alkylated Germanes by B(C6F5)3-Catalyzed Transfer Hydrogermylation of Alkenes. Org. Lett. 2017, 19, 1898–1901; (c) Li, D.; Ning, L.; Luo, Q.; Wang, S.; Feng, X.; Dong, S. C-H Alkylation of Pyridines with Olefins Catalyzed by Imidazolin-2-iminato-ligated rare-earth Alkyl Complexes. Sci. China Chem. 2023, 66, 1804–1813.
- 11(a) Han, X.; Larock, R. C. Synthesis of Highly Functionalized Polycyclics via Pd-Catalyzed Intramolecular Coupling of Aryl/Vinylic Halides, Non-conjugated Dienes and Nucleophiles. Synlett 1998, 7, 748–750; (b) Larock, R. C.; Han, X. Palladium-Catalyzed Cross-Coupling of 2,5-Cyclohexadienyl-Substituted Aryl or Vinylic Iodides and Carbon or Heteroatom Nucleophiles. J. Org. Chem. 1999, 64, 1875–1887.
- 12(a) Pang, H.; Wu, D.; Cong, H.; Yin, G. Stereoselective Palladium-Catalyzed 1,3-Arylboration of Unconjugated Dienes for Expedient Synthesis of 1,3-Disubstituted Cyclohexanes. ACS Catal. 2019, 9, 8555–8560; (b) Zhang, Y.; Shen, H. C.; Li, Y. Y.; Huang, Y. S.; Han, Z. Y.; Wu, X. Access to Chiral Tetrahydrofluorenes through a Palladium-Catalyzed Enantioselective Tandem Intramolecular Heck/Tsuji-Trost Reaction. Chem. Commun. 2019, 55, 3769–3772; (c) Zhu, D.; Jiao, Z.; Chi, Y. R.; Goncalves, T. P.; Huang, K.-W.; Zhou, J. S. Asymmetric Three- Component Heck Arylation/Amination of Nonconjugated Cyclodienes. Angew. Chem. Int. Ed. 2020, 59, 5341–5345; (d) Zhu, D.; Xu, W.; Pu, M.; Wu, Y. D.; Chi, Y. R.; Zhou, J. S. Asymmetric Domino Heck Arylation and Alkylation of Nonconjugated Dienes: Double C—F···Sodium Attractive Noncovalent Interaction. Org. Lett. 2021, 23, 7064–7068.
- 13(a) Wang, W.; Ding, C.; Li, Y.; Li, Z.; Li, Y.; Peng, L.; Yin, G. Migratory Arylboration of Unactivated Alkenes Enabled by Nickel Catalysis. Angew. Chem. Int. Ed. 2019, 58, 4612–4616; (b) Li, Y.; Pang, H.; Wu, D.; Li, Z.; Wang, W.; Wei, H.; Fu, Y.; Yin, G. Nickel-Catalyzed 1,1-Alkylboration of Electronically Unbiased Terminal Alkenes. Angew. Chem. Int. Ed. 2019, 58, 8872–8876; (c) Wang, W.; Ding, C.; Yin, G. Catalyst-Controlled Enantioselective 1,1-Arylboration of Unactivated Olefins. Nat. Catal. 2020, 3, 951–958; (d) Ding, C.; Ren, Y.; Sun, C.; Long, J.; Yin, G. Regio- and Stereoselective Alkylboration of Endocyclic Olefins Enabled by Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 20027–20034; (e) Li, Y.; Li, Y.; Shi, H.; Wei, H.; Li, H.; Funes-Ardoiz, I.; Yin, G. Modular Access to Substituted Cyclohexanes with Kinetic Stereocontrol. Science 2022, 376, 749–753; (f) Sun, C.; Li, Y.; Yin, G. Practical Synthesis of Chiral Allylboronates by Asymmetric 1,1-Difunctionalization of Terminal Alkenes. Angew. Chem. Int. Ed. 2022, 61, e202209076; (g) Li, Z.; Shi, H.; Chen, X.; Peng, L.; Li, Y.; Yin, G. Nickel-Catalyzed Regio- and Enantioselective Borylative Coupling of Terminal Alkenes with Alkyl Halides Enabled by an Anionic Bisoxazoline Ligand. J. Am. Chem. Soc. 2023, 145, 13603–13614; (h) Qi, X.; Yang, C. Nickel Catalyzed Regio- and Stereoselective Alkylboration of Endocyclic Olefins. Chin. J. Org. Chem. 2022, 42, 657–658; (i) Shi, Z.; Xi, L. Enantioselective Nickel-Catalyzed 1,1-Arylboration of Terminal Olefins. Chin. J. Org. Chem. 2021, 41, 1264–1265.
- 14 Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent Advances in Homogeneous Nickel Catalysis. Nature 2014, 509, 299–309.
- 15 Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Enantiospecific sp2-sp3 Coupling of Secondary and Tertiary Boronic Esters. Nat. Chem. 2014, 6, 584–589.
- 16 Swamy, K. C.; Kumar, N. N.; Balaraman, E.; Kumar, K. V. Mitsunobu and Related Reactions: Advances and Applications. Chem. Rev. 2009, 109, 2551–2651.
- 17(a) Biswas, S.; Weix, D. J. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc. 2013, 135, 16192–16197; (b) Schwarzwalder, G. M.; Matier, C. D.; Fu, G. C. Enantioconvergent Cross-Couplings of Alkyl Electrophiles: The Catalytic Asymmetric Synthesis of Organosilanes. Angew. Chem. Int. Ed. 2019, 58, 3571–3574.