Strong Antiferromagnetic Exchange-Coupling Observed in Hydride-Bridged Dimeric Dysprosium(III) Single-Molecule Magnet
Qian-Cheng Luo
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorKe-Xin Yu
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorPeng-Bo Jin
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorYe-Ye Liu
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorYuan-Qi Zhai
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorCorresponding Author
Yan-Zhen Zheng
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]Search for more papers by this authorQian-Cheng Luo
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorKe-Xin Yu
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorPeng-Bo Jin
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorYe-Ye Liu
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorYuan-Qi Zhai
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorCorresponding Author
Yan-Zhen Zheng
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
One dihydride-bridged dimeric Dy(III) guanidinate complex, formulated as [{(Me3Si)2NC(NiPr)2}2Dy(μ-H)]2 (1Dy), was successfully isolated and the introduction of hydride bridges significantly reduces the intramolecular Dy(III)···Dy(III) distance to only 3.688(1) Å. To investigate the effect of such a short Dy(III)···Dy(III) distance on magnetism, we also prepared its dibromide-bridged analogue [{(Me3Si)2NC(NiPr)2}2Dy(μ-Br)]2 (2Dy), which has a much longer Dy(III)···Dy(III) distance of 4.605(4) Å. Surprisingly, 2Dy demonstrates much larger effective energy barrier for magnetization reversal (Ueff) and higher blocking temperature (TB). The worse performance of 1Dy is attributed to the concerted effect of strong antiferromagnetic interactions between Dy(III) ions (Jtotal = –2.683 cm–1) and the unparallel arrangement of magnetic principle axes of the Dy(III) ions for 1Dy.
Supporting Information
Filename | Description |
---|---|
cjoc202300491-sup-0001-supinfo.pdfPDF document, 12.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Chilton, N. F. Molecular Magnetism. Annu. Rev. Mater. Res. 2022, 52, 79–101.
- 2Zhu, Z.; Guo, M.; Li, X.-L.; Tang, J. Molecular magnetism of lanthanide: Advances and perspectives. Coord. Chem. Rev. 2019, 378, 350–364.
- 3Ashebr, T. G.; Li, H.; Ying, X.; Li, X.-L.; Zhao, C.; Liu, S.; Tang, J. Emerging Trends on Designing High-Performance Dysprosium(III) Single-Molecule Magnets. ACS Mater. Lett. 2022, 4, 307–319.
- 4Zhu, Z.; Tang, J. Lanthanide single-molecule magnets with high anisotropy barrier: where to from here? Natl. Sci. Rev. 2022, 9, nwac194.
- 5Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A. Magnetic hysteresis up to 80 K in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.
- 6Goodwin, C. A. P.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442.
- 7Yu, K.-X.; Kragskow, J. G. C.; Ding, Y.-S.; Zhai, Y.-Q.; Reta, D.; Chilton, N. F.; Zheng, Y.-Z. Enhancing magnetic hysteresis in single-molecule magnets by ligand functionalization. Chem 2020, 6, 1777–1793.
- 8Ding, X.; Luo, Q.; Zhai, Y.; Zhang, X.; Lv, Y.; Zhang, X.; Ke, C.; Wu, C.; Zheng, Y. Rigid Dysprosium(III) Single-Molecule Magnets Exhibit Preserved Superparamagnetism in Solution. Chin. J. Chem. 2022, 40, 563–570.
- 9Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837.
- 10Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew. Chem. Int. Ed. 2017, 56, 11445–11449.
- 11Evans, P.; Reta, D.; Whitehead, G. F. S.; Chilton, N. F.; Mills, D. P. Bis-Monophospholyl Dysprosium Cation Showing Magnetic Hysteresis at 48 K. J. Am. Chem. Soc. 2019, 141, 19935–19940.
- 12Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-stable chiral single-molecule magnets with record anisotropy barrier exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082.
- 13Wang, Y.; Velkos, G.; Israel, N. J.; Rosenkranz, M.; Büchner, B.; Liu, F.; Popov, A. A. Electrophilic Trifluoromethylation of Dimetallofullerene Anions en Route to Air-Stable Single-Molecule Magnets with High Blocking Temperature of Magnetization. J. Am. Chem. Soc. 2021, 143, 18139–18149.
- 14Vanjak, J. C.; Wilkins, B. O.; Vieru, V.; Bhuvanesh, N. S.; Reibenspies, J. H.; Martin, C. D.; Chibotaru, L. F.; Nippe, M. A High-Performance Single-Molecule Magnet Utilizing Dianionic Aminoborolide Ligands. J. Am. Chem. Soc. 2022, 144, 17743–17747.
- 15Vincent, A. H.; Whyatt, Y. L.; Chilton, N. F.; Long, J. R. Strong Axiality in a Dysprosium(III) Bis(borolide) Complex Leads to Magnetic Blocking at 65 K. J. Am. Chem. Soc. 2023, 145, 1572–1579.
- 16Gould, C. A.; McClain, K. R.; Reta, D.; Kragskow, J. G.; Marchiori, D. A.; Lachman, E.; Choi, E. S.; Analytis, J. G.; Britt, R. D.; Chilton, N. F.; Harvey, B. G.; Long, J. R. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202.
- 17Swain, A.; Sharma, T.; Rajaraman, G. Strategies to quench quantum tunneling of magnetization in lanthanide single molecule magnets. Chem. Commun. 2023, 59, 3206–3228.
- 18Chen, Y.-C.; Tong, M.-L. Single-Molecule Magnets beyond a Single Lanthanide Ion: The Art of Coupling. Chem. Sci. 2022, 13, 8716– 8726.
- 19Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. Strong exchange and magnetic blocking in N23--radical-bridged lanthanide complexes. Nat. Chem. 2011, 3, 538–542.
- 20Liu, F.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Büchner, B.; Popov, A. A. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 2017, 8, 16098.
- 21Han, T.; Giansiracusa, M. J.; Li, Z.-H.; Ding, Y.-S.; Chilton, N. F.; Winpenny, R. E. P.; Zheng, Y.-Z. Exchange-Biasing in a Dinuclear Dysprosium(III) Single-Molecule Magnet with a Large Energy Barrier for Magnetisation Reversal. Chem. - Eur. J. 2020, 26, 6773–6777.
- 22Meng, Y.-S.; Xiong, J.; Yang, M.-W.; Qiao, Y.-S.; Zhong, Z.-Q.; Sun, H.-L.; Han, J.-B.; Liu, T.; Wang, B.-W.; Gao, S. Experimental Determination of Magnetic Anisotropy in Exchange-Bias Dysprosium Metallocene Single-Molecule Magnets. Angew. Chem. Int. Ed. 2020, 59, 13037–13043.
- 23Xiong, J.; Ding, H.-Y.; Meng, Y.-S.; Gao, C.; Zhang, X.-J.; Meng, Z.-S.; Zhang, Y.-Q.; Shi, W.; Wang, B.-W.; Gao, S. Hydroxide-bridged five-coordinate DyIII single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers. Chem. Sci. 2017, 8, 1288–1294.
- 24Jin, P.-B.; Luo, Q.-C.; Zhai, Y.-Q.; Wang, Y.-D.; Ma, Y.; Tian, L.; Zhang, X.; Ke, C.; Zhang, X.-F.; Lv, Y.; Zheng, Y.-Z. A study of cation-dependent inverse hydrogen bonds and magnetic exchange-couplings in lanthanacarborane complexes. iScience 2021, 24, 102760.
- 25Venugopal, A.; Tuna, F.; Spaniol, T.; Ungur, L.; Chibotaru, L.; Okuda, J.; Layfield, R. A. A hydride-ligated dysprosium single-molecule magnet. Chem. Commun. 2013, 49, 901–903.
- 26Lu, Z.; Yap, G. P. A.; Richeson, D. S. Tetrasubstituted Guanidinate Anions as Supporting Ligands in Organoyttrium Chemistry. Organometallics 2001, 20, 706–712.
- 27Yao, Y.; Luo, Y.; Chen, J.; Zhang, Z.; Zhang, Y.; Shen, Q. Synthesis and characterization of bis(guanidinate)lanthanide diisopropylamido complexes: New highly active initiators for the polymerizations of ε-caprolactone and methyl methacrylate. J. Organomet. Chem. 2003, 679, 229–237.
- 28Trifonov, A. A.; Skvortsov, G. G.; Lyubov, D. M.; Fukin, G. K.; Fedorova, E. A.; Bochkarev, M. N. Synthesis and properties of guanidinate derivatives of rare-earth metals. Molecular structures of the {(Me3Si)2NC(NPri)2}2Y(μ-Cl)2Li(THF)2, [{(Me3Si)2NC(NPri)2}2SmCl]2 and {(Me3Si)2NC(NPri)2}Sm(μ3-BH4)2(DME) complexes. Russ. Chem. Bull. Int. Ed. 2005, 54, 2511–2518.
- 29Trifonov, A. A.; Skvortsov, G. G.; Lyubov, D. M.; Skorodumova, N. A.; Fukin, G. K.; Baranov, E. V.; Glushakova, V. N. Postmetallocene Lanthanide-Hydrido Chemistry: A New Family of Complexes [{Ln{(Me3Si)2NC(NiPr)2}2(μ-H)}2] (Ln=Y, Nd, Sm, Gd, Yb) Supported by Guanidinate Ligands—Synthesis, Structure, and Catalytic Activity in Olefin Polymerization. Chem. - Eur. J. 2006, 12, 5320–5327.
- 30Jin, P.-B.; Yu, K.-X.; Zhai, Y.-Q.; Luo, Q.-C.; Wang, Y.-D.; Zhang, X.-F.; Lv, Y.; Zheng, Y.-Z. Chelating Guanidinates for Dysprosium(III) Single-Molecule Magnets. Chin. J. Chem. 2021, 39, 1635–1640.
- 31Galván, I. F.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J. J.; Bokarev, S. I.; Bogdanov, N. A.; Carlson, R. K.; Chibotaru, L. F.; Creutzberg, J.; Dattani, N.; Delcey, M. G.; Dong, S. S.; Dreuw, A.; Freitag, L.; Frutos, L. M.; Gagliardi, L.; Gendron, F.; Giussani, A.; González, L.; Grell, G.; Guo, M.; Hoyer, C. E.; Johansson, M.; Keller, S.; Knecht, S.; Kovačević, G.; Källman, E.; Manni, G. L.; Lundberg, M.; Ma, Y.; Mai, S.; Malhado, J. P.; Malmqvist, P. Å.; Marquetand, P.; Mewes, S. A.; Norell, J.; Olivucci, M.; Oppel, M.; Phung, Q. M.; Pierloot, K.; Plasser, F.; Reiher, M.; Sand, A. M.; Schapiro, I.; Sharma, P.; Stein, C. J.; Sørensen, L. K.; Truhlar, D. G.; Ugandi, M.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Weser, O.; Wesołowski, T. A.; Widmark, P.-O.; Wouters, S.; Zech, A.; Zobel, J. P.; Lindh, R. J. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964.
- 32Lines, M. E. Orbital Angular Momentum in the Theory of Paramagnetic Clusters. J. Chem. Phys. 1971, 55, 2977–2984.
- 33Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, Magnetism, and Theoretical Study of a Mixed-Valence CoII3CoIII4 Heptanuclear Wheel: Lack of SMM Behavior despite Negative Magnetic Anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.
- 34Chibotaru, L. F.; Ungur, L.; Soncini, A. The Origin of Nonmagnetic Kramers Doublets in the Ground State of Dysprosium Triangles: Evidence for a Toroidal Magnetic Moment. Angew. Chem. Int. Ed. 2008, 47, 4126–4129.
- 35Wang, Y.; Luo, Q.-C.; Zhai, Y.-Q.; Jin, P.-B.; Fu, Z.; Sun, Q.; Li, F.-N.; Zheng, Y.-Z. Heteroleptic Dysprosium(III) Single-Molecule Magnets with Amidinate and Cyclopentadienyl Ligands. Cryst. Growth Des. 2022, 22, 6398–6404.
- 36Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 1981, 74, 5737–5743.
- 37Noodleman, L.; Davidson, E. R. Ligand spin polarization and antiferromagnetic coupling in transition metal dimers. Chem. Phys. 1986, 109, 131–143.
- 38Luo, Q.-C.; Zheng, Y.-Z. Methods and Models of Theoretical Calculation for Single-Molecule Magnets. Magnetochemistry 2021, 7, 107.
- 39Acharya, J.; Ahmed, N.; Gonzalez, J. F.; Kumar, P.; Cador, O.; Singh, S. K.; Pointillart, F.; Chandrasekhar, V. Slow magnetic relaxation in a homo dinuclear Dy(iii) complex in a pentagonal bipyramidal geometry. Dalton Trans. 2020, 49, 13110–13122.
- 40Dey, S.; Rajaraman, G. Attaining record-high magnetic exchange, magnetic anisotropy and blocking barriers in dilanthanofullerenes. Chem. Sci. 2021, 12, 14207–14216.
- 41Yamaguchi, K.; Takahara, Y.; Fueno, T. Ab-Initio Molecular Orbital Studies of Structure and Reactivity of Transition Metal-OXO Compounds. In Applied Quantum Chemistry, Eds.: V. H. Smith; H. F. Schaefer; K. Morokuma, Springer, Dordrecht, 1986.
10.1007/978-94-009-4746-7_11 Google Scholar