Synthesis, Structure and Magnetic Behavior of a Novel Series of Trinuclear Windwheel Complexes
Rong Luo
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorChen-Ze Xie
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorMing-Guang Chen
Baotou Research Institute of Rare Earths, Baotou, Inner Mongolia, 014040 China
Search for more papers by this authorHai-Yan Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorXiang-Jian Kong
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYu-Hua Fan
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorCorresponding Author
Feng Shao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
E-mail: [email protected]Search for more papers by this authorRong Luo
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorChen-Ze Xie
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorMing-Guang Chen
Baotou Research Institute of Rare Earths, Baotou, Inner Mongolia, 014040 China
Search for more papers by this authorHai-Yan Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorXiang-Jian Kong
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYu-Hua Fan
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorCorresponding Author
Feng Shao
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
A new family of trinuclear windwheel complexes with molecular formula [MII3(tpa)3(μ-ttc)](ClO4)3·n(sol) (ttc = 1,3,5-triazine-2,4,6-trithiol; tpa = tris(2-pyridylmethyl)amine; M = Mn, n = 2, sol = CH3CN, 1; M = Co, n = 1, sol = CH3CN, 2; M = Ni, n = 0, 3) were synthesized and characterized. Single-crystal X-ray diffraction revealed that three metal centers in 1—3 are connected by ttc bridge, forming a regular triangular MII3 core. Each metal center is bonded by chelating S, N atoms from ttc and by N atoms from tpa. Magnetic studies showed that 1—3 displayed antiferromagnetic behavior and further gave the easy-axis anisotropy (D = −0.77 cm−1 for 1 and −8.13 cm−1 for 2) and easy-plane anisotropy (D = 5.08 cm−1 for 3). Moreover, 2 exhibited field-induced slow magnetic relaxation behavior and their effective energy barriers were roughly evaluated Ueff = 6.9 K.
Supporting Information
Filename | Description |
---|---|
cjoc202300432-sup-0001-Supinfo.pdfPDF document, 1.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143.
- 2 Blagg, R. J.; Ungur, L.; Tuna, F.; Speak, J.; Comar, P.; Collison, D.; Wernsdorfer, W.; McInnes, E. J. L.; Chibotaru, L. F.; Winpenny, R. E. P. Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat. Chem. 2013, 5, 673–678.
- 3 Vincent, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 2012, 488, 357–360.
- 4 Thiele, S.; Balestro, F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Electrically driven nuclear spin resonance in single- molecule magnets. Science 2014, 344, 1135–1138.
- 5 Shao, F.; Cahier, B.; Guihéry, N.; Rivière, E.; Guillot, R.; Barra, A. L.; Lan, Y.; Wernsdorfer, W.; Campbell, V. E.; Mallah, T. Tuning the Ising-type anisotropy in trigonal bipyramidal Co(II) complexes. Chem. Commun. 2015, 51, 16475–16478.
- 6 Goodwin, C. A. P.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442.
- 7 Shao, F.; Cahier, B.; Rivière, E.; Guillot, R.; Guihéry, N.; Campbell, V. E.; Mallah, T. Structural Dependence of the Ising-type Magnetic Anisotropy and of the Relaxation Time in Mononuclear Trigonal Bipyramidal Co(II) Single Molecule Magnets. Inorg. Chem. 2017, 56 1104–1111.
- 8 Bunting, P. C.; Atanasov, M.; Damgaard-Møller, E.; Perfetti, M.; Crassee, I.; Orlita, M.; Overgaard, J.; Slageren, J. V.; Neese, F.; Long, J. R. A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science 2018, 362, 7319.
- 9 Shao, D.; Xu, F.-X.; Yin, L.; Li, H.-Q.; Sun, Y.-C.; Ouyang, Z.-W.; Wang, Z.-X.; Zhang, Y.-Q.; Wang, X.-Y. Fine-Tuning of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(II) Complexes. Chin. J. Chem. 2022, 40, 2193–2202.
- 10 Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M. L.; Mansikkamaki, A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.
- 11 Gould, C. A.; McClain, K.; Reta, R. D.; Kragskow, J. G.; Marchiori, D. A.; Lachman, E.; Choi, E. S.; Analytis, J. G.; Britt, R. D.; Chilton, N. F.; Long, J. R. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202.
- 12 Shao, F.; Cahier, B.; Wang, Y. T.; Yang, F. L.; Riviere, E.; Guillot, R.; Guihery, N.; Tong, J. P.; Mallah, T. Magnetic Relaxation Studies on Trigonal Bipyramidal Cobalt(II) Complexes. Chem. Asian J. 2020, 15, 391–397.
- 13 Ling, B.-K.; Zhai, Y.-Q.; Jin, P.-B.; Ding, H.-F.; Zhang, X.-F.; Lv, Y.; Fu, Z.; Deng, J.; Schulze, M.; Wernsdorfer, W.; Zheng, Y.-Z. Suppression of zero-field quantum tunneling of magnetization by a fluorido bridge for a "very hard" 3d-4f single-molecule magnet. Matter 2022, 5, 3485–3498.
- 14 Wang, Z.; Jagličić, Z.; Han, L.-L.; Zhuang, G.-L.; Luo, G.-G.; Zeng, S.-Y.; Tung, C.-H.; Sun, D. Octanuclear Ni(II) cubes based on halogen-substituted pyrazolates: synthesis, structure, electrochemistry and magnetism. CrystEngComm 2016, 18, 3462–3471.
- 15 Wu, X.; Li, J.-F.; Yin, B. The interpretation and prediction of lanthanide single-ion magnets from ab initio electronic structure calculation: the capability and limit. Dalton Trans. 2022, 51, 14793–14816.
- 16 Ding, Z.-Y.; Meng, Y.-S.; Xiao, Y.; Zhang, Y.-Q.; Zhu, Y.-Y.; Gao, S. Probing the influence of molecular symmetry on the magnetic anisotropy of octahedral cobalt(II) complexes. Inorg. Chem. Front. 2017, 4, 1909–1916.
- 17 Luo, R.; Xu, C.-G.; Tong, J.-P.; Shi, H.-Y.; Kong, X.-J.; Fan, Y.-H.; Shao, F. Synthesis, structure, and magnetism of a novel series of trinuclear nickel(II) clusters. CrystEngComm 2022, 24, 5987–5994.
- 18 Deng, Y.; Wu, Y.; Li, Z.; Jagličić, Z.; Gupta, R. K.; Tung, C.; Sun, D. Synthesis, Structure, and Optical-response Magnetic Property of a Heteroarene-azo Functionalized Mn19 Cluster. Chin. J. Chem. 2023, 41, 1667–1672.
- 19 Gransbury, G. K.; Livesay, B. N.; Janetzki, J. T.; Hay, M. A.; Gable, R. W.; Shores, M. P.; Starikova, A.; Boskovic, C. Understanding the Origin of One- or Two-Step Valence Tautomeric Transitions in Bis(dioxolene)-Bridged Dinuclear Cobalt Complexes. J. Am. Chem. Soc. 2020, 142, 10692–10704.
- 20 Deng, Y.-K.; Su, H.-F.; Xu, J-H..; Wang, W.-G.; Kurmoo, M.; Lin, S.-C.; Tan, Y.-Z.; Jia, J.; Sun, D.; Zheng, L.-S. Hierarchical Assembly of a {MnII15MnIII4} Brucite Disc: Step-by-Step Formation and Ferrimagnetism. J. Am. Chem. Soc. 2016, 138, 1328–1334.
- 21ABieńko, A.; Kopel, P.; Kizek, R.; Kruszyński, R.; Bieńko, D.; Titiš, J.; Boča, R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta 2014, 416, 147–156.
- 22 Wang, J.-H.; Li, Z.-Y.; Yamashita, M.; Bu, X.-H. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord. Chem. Rev. 2021, 428, 213617.
- 23 Srinivasan, A.; Musgrave, R. A.; Rouzières, M.; Clérac, R.; McGrady, J. E.; Hillard, E. A. A linear metal–metal bonded tri-iron single-molecule magnet. Chem. Comm. 2021, 57, 13357–13360.
- 24 Alexandropoulos, D. I.; Dolinar, B. S.; Vignesh, K. R.; Dunbar, K. R. Putting a New Spin on Supramolecular Metallacycles: Co3 Triangle and Co4 Square Bearing Tetrazine-Based Radicals as Bridges. J. Am. Chem. Soc. 2017, 139, 11040–11043.
- 25 Guo, Z.; Deng, Y.-F.; Pikramenou, Z.; Dunbar, K. R.; Zhang, Y.-Z. Strong Coupling and Slow Relaxation of the Magnetization for an Air-Stable [Co4] Square with Both Tetrazine Radicals and Azido Bridges. Inorg. Chem. 2021, 60, 3651–3656.
- 26 Mougel, V.; Chatelain, L.; Pécaut, J.; Caciuffo, R.; Colineau, E.; Griveau, J.-C.; Mazzanti, M. Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier. Nat. Chem. 2012, 4, 1011–1017.
- 27
Zhang, H.-L.; Zhai, Y.-Q.; Qin, L.; Ungur, L.; Nojiri, H.; Zheng, Y.-Z. Single-Molecule Toroic Design through Magnetic Exchange Coupling. Matter 2020, 2, 1481–1493.
10.1016/j.matt.2020.02.021 Google Scholar
- 28 Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708.
- 29 Marek, J.; Trávníček, Z.; Čermáková, Š. (μ3-Trithiocyanurato- κ6N1,S2:N3,S4:N5,S6)tris[(N,N,N′,N′′,N′′-pentamethyldiethylenetriamine- κ3N,N′,N′′)zinc(II)] tris(perchlorate). Acta Crystallogr., Sect. E: Struct. Rep. Online 2007, 63, m1411–m1413.
- 30 Kopel, P.; Mrozinski, J.; Doležal, K.; Langer, V.; Boča, R.; Bieńko, A.; Pochaba, A. Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge. Eur. J. Inorg. Chem. 2009, 2009, 5475–5482.
- 31
Kar, S.; Pradhan, B.; Sinha, R. K.; Kundu, T.; Kodgire, P.; Rao, K. K.; Puranik, V. G.; Lahiri, G. K. Synthesis, structure, redox, NLO and DNA interaction aspects of [{(L′–‴)2RuII}3(μ3-L)]3+ and [(L′)2RuII(NC5H4S−)]+ [L3− = 1,3,5-triazine-2,4,6-trithiolato, L′–‴ = arylazopyridine]. Dalton Trans. 2004, 11, 1752–1760.
10.1039/B403332A Google Scholar
- 32 Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179.
- 33 da Cunha, T. T.; Barbosa, V. M. M.; Oliveira, W. X. C.; Pedroso, E. F.; García, D. M. A.; Nunes, W. C.; Pereira, C. L. M. Field-Induced Slow Magnetic Relaxation of a Six-Coordinate Mononuclear Manganese(II) and Cobalt(II) Oxamate Complexes. Inorg. Chem. 2020, 59, 12983–12987.
- 34 Ferreira, P. S.; Cerdeira, A. C.; Cruz, T. F. C.; Bandeira, N. A. G.; Hunger, D.; Allgaier, A.; van Slageren, J.; Almeida, M.; Pereira, L. C. J.; Gomes, P. T. Single-ion magnet behaviour in homoleptic Co(II) complexes bearing 2-iminopyrrolyl ligands. Inorg. Chem. Front. 2022, 9, 4302–4319.
- 35 Kharwar, A. K.; Konar, S. Exchange coupled Co(II) based layered and porous metal-organic frameworks: structural diversity, gas adsorption, and magnetic properties. Dalton Trans. 2020, 49, 4012–4021.
- 36 Kong, J.-J.; Shao, D.; Zhang, J.-C.; Jiang, Y.-X.; Ji, C.-L.; Huang, X.-C. From mononuclear to two-dimensional cobalt(II) complexes based on a mixed benzimidazole-dicarboxylate strategy: syntheses, structures, and magnetic properties. CrystEngComm 2019, 21, 749–757.
- 37 Kamebuchi, H.; Murakami, H.; Shiga, R.; Tadokoro, M. Preparation of a magnetic metal-organic square and metal-organic cubes using 4,5-bis(2-imidazolinyl)imidazolate: slow magnetization relaxation behavior in mixed-valent octamanganese(II/III) clusters. Dalton Trans. 2021, 50, 5452–5464.
- 38 Shao, D.; Peng, P.; You, M.; Shen, L.-F.; She, S.-Y.; Zhang, Y.-Q.; Tian, Z. Hydrogen-Bonded Framework of a Cobalt(II) Complex Showing Superior Stability and Field-Induced Slow Magnetic Relaxation. Inorg. Chem. 2022, 61, 3754–3762.
- 39 Guo, L.-Y.; Su, H.-F.; Kurmoo, M.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Core-Shell {Mn7⊂(Mn,Cd)12} Assembled from Core {Mn7} Disc. J. Am. Chem. Soc. 2017, 139, 14033–14036.
- 40 Xu, C.; Luo, R.; Xie, C.; Fan, C.; Fan, Y.; Zhang, X. Photocatalytic and magnetic properties of two Ni(II) metal-organic complexes based on 6,6’-di(benzimidazol-2-yl)-2,2’-bipyridine. Polyhedron 2023, 233, 116305.
- 41 Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175.
- 42 Čermáková, Š.; Herchel, R.; Trávníček, Z.; Šebela, M. Syntheses and magnetic properties of trinuclear trithiocyanurato-bridged manganese(II) complexes involving bidentate aromatic N-donor heterocycles. Inorg. Chem. Commun. 2010, 13, 778–781.
- 43 Bieńko, A.; Kopel, P.; Kizek, R.; Kruszyński, R.; Bieńko, D.; Titiš, J.; Boča, R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta 2014, 416, 147–156.
- 44 Reta, D.; Chilton, N. F. Uncertainty estimates for magnetic relaxation times and magnetic relaxation parameters. Phys. Chem. Chem. Phys. 2019, 21, 23567–23575.
- 45 Boča, R.; Rajnák, C.; Titiš, J.; Valigura, D. Field Supported Slow Magnetic Relaxation in a Mononuclear Cu(II) Complex. Inorg. Chem. 2017, 56, 1478–1482.
- 46 Luis, F.; Bartolomé, J.; Fernández, J. F.; Tejada, J.; Hernández, J. M.; Zhang, X. X.; Ziolo, R. Thermally activated and field-tuned tunneling in Mn12Ac studied by ac magnetic susceptibility. Phys. Rev. B 1997, 55, 11448–11456.
- 47 Bartolomé, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C. Magnetostructural correlations in the tetranuclear series of {Fe3LnO2} butterfly core clusters: Magnetic and Mössbauer spectroscopic study. Phys. Rev. B 2009, 80, 014430.
- 48 Shao, F.; Zhuang, J.-J.; Chen, M. G.; Wang, N.; Shi, H.-Y.; Tong, J.-P.; Luo, G.; Zheng, L. S. Facile and environmentally friendly synthesis of six heterometallic dumbbell-shaped MII5LnIII4 (M = Co, Ni; Ln = Eu, Gd, Dy) clusters as cryogenic magnetic coolants and molecular magnets. Dalton Trans. 2018, 47, 16850–16854.