Fe-Based Metal-Organic Frameworks: From Various Synthesis, Diverse Structures to Multifunctional Applications
Xiaokang Wang
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
Search for more papers by this authorMingming Xu
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
Search for more papers by this authorCorresponding Author
Weidong Fan
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Daofeng Sun
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiaokang Wang
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
Search for more papers by this authorMingming Xu
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
Search for more papers by this authorCorresponding Author
Weidong Fan
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Daofeng Sun
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Iron-based metal-organic frameworks (Fe-MOFs) have attracted extensive interest from researchers due to their tunability, favorable properties, and chemical versatility. Compared with conventional porous materials, Fe-MOFs exhibit better performance in a wide variety of applications. Herein, the structures of Fe-MOFs are summarized to explore potential structures based on isoreticular chemistry, as well as the recent research progress in their synthesis and multifunctional applications. The rapid development of Fe-MOFs has broadened the application range of Fe-MOFs, and a brief description of Fe-MOF applications in gas storage and separation, catalysis, bioimaging, and magnetism is outlined, with the aim to expand the prospects of Fe-MOFs in more practical applications.
References
- 1 Feng, L.; Wang, K. Y.; Willman, J.; Zhou, H. C. Hierarchy in Metal-Organic Frameworks. ACS Cent. Sci. 2020, 6, 359–367.
- 2 Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O. M. Pore Chemistry of Metal-Organic Frameworks. Adv. Funct. Mater. 2020, 30, 2000238.
- 3 Cui, W. G.; Hu, T. L.; Bu, X. H. Metal-Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Adv. Mater. 2020, 32, 1806445.
- 4 Wang, X.; Liu, H.; Li, Y.; Yang, X.; Gao, F.; Wang, X.; Kang, Z.; Fan, W.; Sun, D. Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coord. Chem. Rev. 2023, 482, 215093.
- 5 Cai, G.; Yan, P.; Zhang, L.; Zhou, H. C.; Jiang, H. L. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem. Rev. 2021, 121, 12278–12326.
- 6 Ghasempour, H.; Wang, K.-Y.; Powell, J. A.; ZareKarizi, F.; Lv, X.-L.; Morsali, A.; Zhou, H.-C. Metal–organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 213542.
- 7 Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, e1704303.
- 8 Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu, Z.; Jiang, L.; Li, H. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J. Hazard. Mater. 2015, 286, 187–194.
- 9 Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B: Environ. 2015, 174–175, 445–454.
- 10 Daglar, H.; Gulbalkan, H. C.; Avci, G.; Aksu, G. O.; Altundal, O. F.; Altintas, C.; Erucar, I.; Keskin, S. Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew. Chem. Int. Ed. 2021, 60, 7828–7837.
- 11 Zhang, X.-X.; Guo, X.-Z.; Chen, S.-S.; Kang, H.-W.; Zhao, Y.; Gao, J.-X.; Xiong, G.-Z.; Hou, L. A stable microporous framework with multiple accessible adsorption sites for high capacity adsorption and efficient separation of light hydrocarbons. Chem. Eng. J. 2023, 466, 143170.
- 12 Yang, Y.; Jin, L.; Zhou, L.; Du, X. A molecular study of humid CO2 adsorption capacity by Mg-MOF-74 surfaces with ligand functionalization. Comp. Mater. Sci. 2022, 209, 111407.
- 13 Fan, W.; Wang, X.; Zhang, X.; Liu, X.; Wang, Y.; Kang, Z.; Dai, F.; Xu, B.; Wang, R.; Sun, D. Fine-Tuning the Pore Environment of the Microporous Cu-MOF for High Propylene Storage and Efficient Separation of Light Hydrocarbons. ACS Cent. Sci. 2019, 5, 1261–1268.
- 14 Deng, X.; Yang, L.; Huang, H.; Yang, Y.; Feng, S.; Zeng, M.; Li, Q.; Xu, D. Shape-Defined Hollow Structural Co-MOF-74 and Metal Nanoparticles@Co-MOF-74 Composite through a Transformation Strategy for Enhanced Photocatalysis Performance. Small 2019, 15, e1902287.
- 15 Zhang, L.; Zhang, J. Metal-organic frameworks for CO2 photoreduction. Front. Energy 2019, 13, 221–250.
- 16 Wang, Y.; Zhang, Z.; Li, J.; Yuan, Y.; Yang, J.; Xu, W.; An, P.; Xi, S.; Guo, J.; Liu, B.; Li, J. Two-Dimensional-on-Three-Dimensional Metal-Organic Frameworks for Photocatalytic H2 Production. Angew. Chem. Int. Ed. 2022, 61, e202211031.
- 17 Wei, J. H.; Yi, J. W.; Han, M. L.; Li, B.; Liu, S.; Wu, Y. P.; Ma, L. F.; Li, D. S. A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. Chem. Asian J. 2019, 14, 3694–3701.
- 18 Olorunyomi, J. F.; Geh, S. T.; Caruso, R. A.; Doherty, C. M. Metal-organic frameworks for chemical sensing devices. Mater. Horiz. 2021, 8, 2387–2419.
- 19 Cui, Y.; Chen, F.; Yin, X. B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron. 2019, 135, 208–215.
- 20 Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Lett. 2021, 13, 203.
- 21 Wen, X. D.; Zhang, Q. Q.; Guan, J. Q. Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 2020, 409, 213214.
- 22 Chen, T.; Wang, F.; Cao, S.; Bai, Y.; Zheng, S.; Li, W.; Zhang, S.; Hu, S. X.; Pang, H. In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel-Zinc Batteries. Adv. Mater. 2022, 34, e2201779.
- 23 Ge, X.; Wong, R.; Anisa, A.; Ma, S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2022, 281, 121322.
- 24 Gao, P.; Chen, Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Antitumor Agents Based on Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2021, 60, 16763–16776.
- 25 Suresh, K.; Matzger, A. J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework (MOF). Angew. Chem. Int. Ed. 2019, 58, 16790–16794.
- 26 Gao, Y.; Yu, G.; Liu, K.; Deng, S.; Wang, B.; Huang, J.; Wang, Y. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework. Chem. Eng. J. 2017, 330, 157–165.
- 27 Wang, Q.; Gao, Q.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339.
- 28 Wang, Y. X.; Wang, H. M.; Meng, P.; Song, D. X.; Qi, Z.; Zhang, X. M. Fe2Mn(μ3-O)(COO)6 Cluster Based Stable MOF for Oxidative Coupling of Amines via Heterometallic Synergy. Chin. J. Chem. 2021, 39, 2983–2989.
- 29 Chen, M.; Lang, L.; Chen, L.; Wang, X.; Shi, C.; Sun, Q.; Xu, Y.; Diwu, J.; Wang, S. Improving in vivo Uranyl Removal Efficacy of a Nano-Metal Organic Framework by Interior Functionalization with 3-Hydroxy-2- pyridinone. Chin. J. Chem. 2022, 40, 2054–2060.
- 30 Liu, X.; Li, J.; Li, N.; Li, B.; Bu, X. H. Recent Advances on Metal-Organic Frameworks in the Conversion of Carbon Dioxide. Chin. J. Chem. 2021, 39, 440–462.
- 31 Yoon, J. W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E.; Llewellyn, P. L.; Serre, C.; Horcajada, P.; Greneche, J. M.; Rodrigues, A. E.; Ferey, G. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. 2010, 49, 5949–5952.
- 32 Whitfield, T. R.; Wang, X.; Liu, L.; Jacobson, A. J. Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci. 2005, 7, 1096–1103.
- 33 Yoon, J. W.; Chang, H.; Lee, S.-J.; Hwang, Y. K.; Hong, D.-Y.; Lee, S.-K.; Lee, J. S.; Jang, S.; Yoon, T.-U.; Kwac, K.; Jung, Y.; Pillai, R. S.; Faucher, F.; Vimont, A.; Daturi, M.; Férey, G.; Serre, C.; Maurin, G.; Bae, Y.-S.; Chang, J.-S. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 2016, 16, 526–531.
- 34 Chen, W.; Wang, Z.; Wang, Q.; El-Yanboui, K.; Tan, K.; Barkholtz, H. M.; Liu, D. J.; Cai, P.; Feng, L.; Li, Y.; Qin, J. S.; Yuan, S.; Sun, D.; Zhou, H. C. Monitoring the Activation of Open Metal Sites in [FexM3-x(μ3-O)] Cluster-Based Metal-Organic Frameworks by Single-Crystal X-ray Diffraction. J. Am. Chem. Soc. 2023, 145, 4736–4745.
- 35 Pearson, R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539.
- 36 Zheng, S.; Li, X.; Yan, B.; Hu, Q.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. Adv. Energy Mater. 2017, 7, 1602733.
- 37 Zimmermann, M. B.; Hurrell, R. F. Nutritional iron deficiency. Lancet 2007, 370, 511–520.
- 38 Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louer, D.; Ferey, G. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4- CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J. Am. Chem. Soc. 2002, 124, 13519–13526.
- 39 Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.
- 40 Mellot-Draznieks, C.; Serre, C.; Surble, S.; Audebrand, N.; Ferey, G. Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J. Am. Chem. Soc. 2005, 127, 16273–16278.
- 41 Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Ferey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007, 2820–2822.
- 42 Horcajada, P.; Salles, F.; Wuttke, S.; Devic, T.; Heurtaux, D.; Maurin, G.; Vimont, A.; Daturi, M.; David, O.; Magnier, E.; Stock, N.; Filinchuk, Y.; Popov, D.; Riekel, C.; Ferey, G.; Serre, C. How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J. Am. Chem. Soc. 2011, 133, 17839–17847.
- 43 Wang, D. K.; Li, Z. H. Iron-based metal-organic frameworks (MOFs) for visible-light-induced photocatalysis. Res. Chem. Intermed. 2017, 43, 5169–5186.
- 44
Xia, Q.; Wang, H.; Huang, B.; Yuan, X.; Zhang, J.; Zhang, J.; Jiang, L.; Xiong, T.; Zeng, G. State-of-the-Art Advances and Challenges of Iron-Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. Small 2019, 15, 1803088.
10.1002/smll.201803088 Google Scholar
- 45 Yang, Q.; Liu, Y.; Ou, H.; Li, X.; Lin, X.; Zeb, A.; Hu, L. Fe-Based metal–organic frameworks as functional materials for battery applications. Inorg. Chem. Front. 2022, 9, 827–844.
- 46 Vallet-Regi, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46, 7548–7558.
- 47 Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643–9655.
- 48 Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Ferey, G.; Stock, N. High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. Inorg. Chem. 2008, 47, 7568–7576.
- 49 Seo, Y.-K.; Yoon, J. W.; Lee, J. S.; Lee, U. H.; Hwang, Y. K.; Jun, C.-H.; Horcajada, P.; Serre, C.; Chang, J.-S. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater. 2012, 157, 137–145.
- 50 Cairns, A. J.; Eckert, J.; Wojtas, L.; Thommes, M.; Wallacher, D.; Georgiev, P. A.; Forster, P. M.; Belmabkhout, Y.; Ollivier, J.; Eddaoudi, M. Gaining Insights on the H2-Sorbent Interactions: Robust soc-MOF Platform as a Case Study. Chem. Mater. 2016, 28, 7353–7361.
- 51 Pilloni, M.; Padella, F.; Ennas, G.; Lai, S.; Bellusci, M.; Rombi, E.; Sini, F.; Pentimalli, M.; Delitala, C.; Scano, A.; Cabras, V.; Ferino, I. Liquid-assisted mechanochemical synthesis of an iron carboxylate Metal Organic Framework and its evaluation in diesel fuel desulfurization. Microporous Mesoporous Mater. 2015, 213, 14–21.
- 52 Jeong, H.; Lee, J. 3D-Superstructured Networks Comprising Fe-MIL-88A Metal-Organic Frameworks Under Mechanochemical Conditions. Eur. J. Inorg. Chem. 2019, 2019, 4597–4600.
- 53 Souza, B. E.; Möslein, A. F.; Titov, K.; Taylor, J. D.; Rudić, S.; Tan, J.-C. Green Reconstruction of MIL-100(Fe) in Water for High Crystallinity and Enhanced Guest Encapsulation. ACS Sustainable Chem. Eng. 2020, 8, 8247–8255.
- 54 Ahmed, I.; Jeon, J.; Khan, N. A.; Jhung, S. H. Synthesis of a Metal–Organic Framework, Iron-Benezenetricarboxylate, from Dry Gels in the Absence of Acid and Salt. Cryst. Growth Des. 2012, 12, 5878–5881.
- 55 Das, A. K.; Vemuri, R. S.; Kutnyakov, I.; McGrail, B. P.; Motkuri, R. K. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance. Sci. Rep. 2016, 6, 28050.
- 56 Tannert, N.; Gokpinar, S.; Hasturk, E.; Niessing, S.; Janiak, C. Microwave-assisted dry-gel conversion-a new sustainable route for the rapid synthesis of metal-organic frameworks with solvent re-use. Dalton Trans. 2018, 47, 9850–9860.
- 57 Ma, M.; Bétard, A.; Weber, I.; Al-Hokbany, N. S.; Fischer, R. A.; Metzler-Nolte, N. Iron-Based Metal–Organic Frameworks MIL-88B and NH2-MIL-88B: High Quality Microwave Synthesis and Solvent-Induced Lattice “Breathing”. Cryst. Growth Des. 2013, 13, 2286–2291.
- 58 Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem. - Eur. J. 2010, 16, 1046–1052.
- 59 Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011, 21, 2220–2227.
- 60 Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-organic frameworks for sensing applications in the gas phase. Sensors 2009, 9, 1574–1589.
- 61 Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.
- 62 Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.; Belver, C. A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts 2019, 9, 52.
- 63 Paseta, L.; Seoane, B.; Julve, D.; Sebastian, V.; Tellez, C.; Coronas, J. Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor. ACS Appl. Mater. Interfaces 2013, 5, 9405–9410.
- 64 Le, V. N.; Kwon, H. T.; Vo, T. K.; Kim, J.-H.; Kim, W.-S.; Kim, J. Microwave-assisted continuous flow synthesis of mesoporous metal-organic framework MIL-100(Fe) and its application to Cu(I)-loaded adsorbent for CO/CO2 separation. Mater. Chem. Phys. 2020, 253, 123278.
- 65 Rasmussen, E. G.; Kramlich, J.; Novosselov, I. V. Scalable Continuous Flow Metal–Organic Framework (MOF) Synthesis Using Supercritical CO2. ACS Sustainable Chem. Eng. 2020, 8, 9680–9689.
- 66 Garcia Marquez, A.; Horcajada, P.; Grosso, D.; Ferey, G.; Serre, C.; Sanchez, C.; Boissiere, C. Green scalable aerosol synthesis of porous metal-organic frameworks. Chem. Commun. 2013, 49, 3848–3850.
- 67 Troyano, J.; Camur, C.; Garzon-Tovar, L.; Carne-Sanchez, A.; Imaz, I.; Maspoch, D. Spray-Drying Synthesis of MOFs, COFs, and Related Composites. Acc. Chem. Res. 2020, 53, 1206–1217.
- 68 Carne-Sanchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D. A spray- drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 2013, 5, 203–211.
- 69 Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.
- 70 Samal, M.; Panda, J.; Biswal, B. P.; Sahu, R. Kitchen grinder: a tool for the synthesis of metal–organic frameworks towards size selective dye adsorption. CrystEngComm 2018, 20, 2486–2490.
- 71 Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 2020, 420, 213407.
- 72 Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187–219.
- 73 Luo, Y.; Tan, B.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Dry gel conversion synthesis and performance of glass-fiber MIL-100(Fe) composite desiccant material for dehumidification. Microporous Mesoporous Mater. 2020, 297, 110034.
- 74 Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23.
- 75 Dong, Y.; Hu, T.; Pudukudy, M.; Su, H.; Jiang, L.; Shan, S.; Jia, Q. Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(Fe) and NH2-MIL-101(Fe) for enhanced tetracycline adsorption. Mater. Chem. Phys. 2020, 251, 123060.
- 76 Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal-organic frameworks—prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636.
- 77 Pourfarzad, H.; Shabani-Nooshabadi, M.; Ganjali, M. R. Novel bi-functional electrocatalysts based on the electrochemical synthesized bimetallicmetal organic frameworks: Towards high energy advanced reversible zinc–air batteries. J. Power Sources 2020, 451, 227768.
- 78 Dunne, P. W.; Lester, E.; Walton, R. I. Towards scalable and controlled synthesis of metal–organic framework materials using continuous flow reactors. React. Chem. Eng. 2016, 1, 352–360.
- 79 Batten, M. P.; Rubio-Martinez, M.; Hadley, T.; Carey, K.-C.; Lim, K.-S.; Polyzos, A.; Hill, M. R. Continuous flow production of metal-organic frameworks. Curr. Opin. Chem. Eng. 2015, 8, 55–59.
- 80 Myers, R. M.; Fitzpatrick, D. E.; Turner, R. M.; Ley, S. V. Flow chemistry meets advanced functional materials. Chem. - Eur. J. 2014, 20, 12348–12366.
- 81 Kim, K. J.; Li, Y. J.; Kreider, P. B.; Chang, C. H.; Wannenmacher, N.; Thallapally, P. K.; Ahn, H. G. High-rate synthesis of Cu-BTC metal-organic frameworks. Chem. Commun. 2013, 49, 11518–11520.
- 82 Garzón-Tovar, L.; Cano-Sarabia, M.; Carné-Sánchez, A.; Carbonell, C.; Imaz, I.; Maspoch, D. A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React. Chem. Eng. 2016, 1, 533–539.
- 83 Xie, L.; Liu, S.; Gao, C.; Cao, R.; Cao, J.; Sun, C.; Su, Z. Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents. Inorg. Chem. 2007, 46, 7782–7788.
- 84 Li, X.; Wu, B.-L.; Niu, C.-Y.; Niu, Y.-Y.; Zhang, H.-Y. Syntheses of Metal-2-(Pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate Networks with Topological Diversity: Gas Adsorption, Thermal Stability and Fluorescent Emission Properties. Cryst. Growth Des. 2009, 9, 3423–3431.
- 85 Zeng, M.-H.; Gao, S.; Yu, X.-L.; Chen, X.-M. Crystal structure and magnetic properties of a new three-dimensional coordination polymer constructed from (4,4) layers based on dimeric iron(II) subunits. New J. Chem. 2003, 27, 1599–1602.
- 86 Kongpatpanich, K.; Horike, S.; Sugimoto, M.; Kitao, S.; Seto, M.; Kitagawa, S. A porous coordination polymer with a reactive diiron paddlewheel unit. Chem. Commun. 2014, 50, 2292–2294.
- 87 Choi, S. B.; Seo, M. J.; Cho, M.; Kim, Y.; Jin, M. K.; Jung, D.-Y.; Choi, J.-S.; Ahn, W.-S.; Rowsell, J. L. C.; Kim, J. A Porous and Interpenetrated Metal-Organic Framework Comprising Tetranuclear IronIII-Oxo Clusters and Tripodal Organic Carboxylates and Its Implications for (3,8)-Coordinated Networks. Cryst. Growth Des. 2007, 7, 2290–2293.
- 88 Gygi, D.; Bloch, E. D.; Mason, J. A.; Hudson, M. R.; Gonzalez, M. I.; Siegelman, R. L.; Darwish, T. A.; Queen, W. L.; Brown, C. M.; Long, J. R. Hydrogen Storage in the Expanded Pore Metal-Organic Frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater. 2016, 28, 1128–1138.
- 89 Yu, F.; Hu, B.-Q.; Wang, X.-N.; Zhao, Y.-M.; Li, J.-L.; Li, B.; Zhou, H.-C. Enhancing the separation efficiency of a C2H2/C2H4 mixture by a chromium metal–organic framework fabricated via post-synthetic metalation. J. Mater. Chem. A 2020, 8, 2083–2089.
- 90 Wang, X. N.; Zhao, Y.; Li, J. L.; Pang, J. D.; Wang, Q.; Li, B.; Zhou, H. C. Biomimetic catalysts of iron-based metal-organic frameworks with high peroxidase-mimicking activity for colorimetric biosensing. Dalton Trans. 2021, 50, 3854–3861.
- 91 Li, Y.-W.; Yan, H.; Hu, T.-L.; Ma, H.-Y.; Li, D.-C.; Wang, S.-N.; Yao, Q.-X.; Dou, J.-M.; Xu, J.; Bu, X.-H. Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. Chem. Commun. 2017, 53, 2394–2397.
- 92 Yoon, J. W.; Lee, J. S.; Lee, S.; Cho, K. H.; Hwang, Y. K.; Daturi, M.; Jun, C. H.; Krishna, R.; Chang, J. S. Adsorptive Separation of Acetylene from Light Hydrocarbons by Mesoporous Iron Trimesate MIL-100(Fe). Chem. - Eur. J. 2015, 21, 18431–18438.
- 93 Dhakshinamoorthy, A.; Alvaro, M.; Chevreau, H.; Horcajada, P.; Devic, T.; Serre, C.; Garcia, H. Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol. 2012, 2, 324–330.
- 94 Lupu, D.; Ardelean, O.; Blanita, G.; Borodi, G.; Lazar, M. D.; Biris, A. R.; Ioan, C.; Mihet, M.; Misan, I.; Popeneciu, G. Synthesis and hydrogen adsorption properties of a new iron based porous metal-organic framework. Int. J. Hydrogen Energy 2011, 36, 3586–3592.
- 95 Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways. ACS Catal. 2014, 4, 4254–4260.
- 96 Fateeva, A.; Clarisse, J.; Pilet, G.; Grenèche, J.-M.; Nouar, F.; Abeykoon, B. K.; Guegan, F.; Goutaudier, C.; Luneau, D.; Warren, J. E.; Rosseinsky, M. J.; Devic, T. Iron and Porphyrin Metal–Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity. Cryst. Growth Des. 2015, 15, 1819–1826.
- 97 Benzaqui, M.; Wahiduzzaman, M.; Zhao, H.; Hasan, M. R.; Steenhaut, T.; Saad, A.; Marrot, J.; Normand, P.; Grenèche, J.-M.; Heymans, N.; De Weireld, G.; Tissot, A.; Shepard, W.; Filinchuk, Y.; Hermans, S.; Carn, F.; Manlankowska, M.; Téllez, C.; Coronas, J.; Maurin, G.; Steunou, N.; Serre, C. A robust eco-compatible microporous iron coordination polymer for CO2 capture. J. Mater. Chem. A 2022, 10, 8535–8545.
- 98 Millange, F.; Guillou, N.; Walton, R. I.; Greneche, J. M.; Margiolaki, I.; Ferey, G. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 2008, 4732–4734.
- 99 Yu, D.; Wu, M.; Hu, Q.; Wang, L.; Lv, C.; Zhang, L. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism. J. Hazard. Mater. 2019, 367, 456–464.
- 100 Sanselme, M.; Greneche, J. M.; Riou-Cavellec, M.; Ferey, G. [Fe2(C10O8H2)]: an antiferromagnetic 3D iron(II) carboxylate built from ferromagnetic edge-sharing octahedral chains (MIL-62). Chem. Commun. 2002, 2172–2173.
- 101 Riou-Cavellec, M.; Férey, G. A new three-dimensional iron trimesate: [Fe3(H2O)5(C9O6H3)2·3H2O] or MIL-65. Solid State Sci. 2002, 4, 1221–1225.
- 102 Riou-Cavellec, M.; Lesaint, C.; Nogues, M.; Greneche, J. M.; Ferey, G. Synthesis, structure, and Mossbauer study of [Fe(H2O)2(C9O6H4)]·H2O: a two-dimensional iron(II) trimellitate (MIL-67). Inorg. Chem. 2003, 42, 5669–5674.
- 103 Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J. M.; Morcrette, M.; Tarascon, J. M.; Maurin, G.; Férey, G. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid. Eur. J. Inorg. Chem. 2010, 2010, 3789–3794.
- 104 Jing, F.; Liang, R.; Xiong, J.; Chen, R.; Zhang, S.; Li, Y.; Wu, L. MIL-68(Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain Cr(VI) and Malachite Green. Appl. Catal. B: Environ. 2017, 206, 9–15.
- 105 Sanselme, M.; Grenèche, J.-M.; Riou-Cavellec, M.; Férey, G. The first ferric carboxylate with a three-dimensional hydrid open-framework (MIL-82): its synthesis, structure, magnetic behavior and study of its dehydration by Mössbauer spectroscopy. Solid State Sci. 2004, 6, 853–858.
- 106 Serre, C.; Mellot-Draznieks, C.; Surble, S.; Audebrand, N.; Filinchuk, Y.; Ferey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007, 315, 1828–1831.
- 107 Li, N.; Jian, C.; Song, Y.; Wang, L.; Rehman, A. U.; Fu, Y.; Zhang, F.; Chen, D.-L.; Zhu, W. Scalable synthesis of MIL-88A(Fe) for efficient aerobic oxidation of cyclohexene to 2-cyclohexene-1-ol. Mol. Catal. 2023, 535, 112899.
- 108 Chowdhury, M. A. Metal-Organic-Frameworks as Contrast Agents in Magnetic Resonance Imaging. ChemBioEng Rev. 2017, 4, 225–239.
- 109 Bhardwaj, U.; Janjani, P.; Sharma, R.; Kushwaha, H. S. Investigation of Single-Metal Fe-Based Metal–Organic Framework as an Electrocatalyst for a Rechargeable Zinc-Air Battery. J. Electron. Mater. 2022, 52, 917–924.
- 110 Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. 2019, 141, 2900–2905.
- 111 Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gomez-Gualdron, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297–303.
- 112 Feng, D.; Wang, K.; Wei, Z.; Chen, Y. P.; Simon, C. M.; Arvapally, R. K.; Martin, R. L.; Bosch, M.; Liu, T. F.; Fordham, S.; Yuan, D.; Omary, M. A.; Haranczyk, M.; Smit, B.; Zhou, H. C. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun. 2014, 5, 5723.
- 113 Pang, M.; Cairns, A. J.; Liu, Y.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. J. Am. Chem. Soc. 2013, 135, 10234–10237.
- 114 Chevreau, H.; Permyakova, A.; Nouar, F.; Fabry, P.; Livage, C.; Ragon, F.; Garcia-Marquez, A.; Devic, T.; Steunou, N.; Serre, C.; Horcajada, P. Synthesis of the biocompatible and highly stable MIL-127(Fe): from large scale synthesis to particle size control. CrystEngComm 2016, 18, 4094–4101.
- 115 Chen, Y.; Qiao, Z.; Huang, J.; Wu, H.; Xiao, J.; Xia, Q.; Xi, H.; Hu, J.; Zhou, J.; Li, Z. Unusual Moisture-Enhanced CO2 Capture within Microporous PCN-250 Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 38638–38647.
- 116 Yuan, D.; Getman, R. B.; Wei, Z.; Snurr, R. Q.; Zhou, H. C. Stepwise adsorption in a mesoporous metal-organic framework: experimental and computational analysis. Chem. Commun. 2012, 48, 3297–3299.
- 117 Wang, K.; Feng, D.; Liu, T. F.; Su, J.; Yuan, S.; Chen, Y. P.; Bosch, M.; Zou, X.; Zhou, H. C. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 2014, 136, 13983–13986.
- 118 Chen, Z.; Sun, Y.; Wang, J.; Zhou, X.; Kong, X.; Meng, J.; Zhang, X. Dual-Responsive Triple-Synergistic Fe-MOF for Tumor Theranostics. ACS Nano 2023, 17, 9003–9013.
- 119 Zhang, J. W.; Hu, M. C.; Li, S. N.; Jiang, Y. C.; Zhai, Q. G. Ligand Torsion Triggered Two Robust Fe-Tetratopic Carboxylate Frameworks with Enhanced Gas Uptake and Separation Performance. Chem. - Eur. J. 2017, 23, 6693–6700.
- 120 Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H. C. Optimizing Multivariate Metal-Organic Frameworks for Efficient C2H2/CO2 Separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.
- 121 Zhang, X.; Fan, W.; Jiang, W.; Li, Y.; Wang, Y.; Fu, M.; Sun, D. Optimizing Fe-Based Metal-Organic Frameworks through Ligand Conformation Regulation for Efficient Dye Adsorption and C2H2/CO2 Separation. Chem. - Eur. J. 2021, 27, 10693–10699.
- 122 Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. - Eur. J. 2004, 10, 1373–1382.
- 123 Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Greneche, J. M.; Le Ouay, B.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J. C.; Daturi, M.; Ferey, G. Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions. J. Am. Chem. Soc. 2010, 132, 1127–1136.
- 124 Ramsahye, N. A.; Trung, T. K.; Bourrelly, S.; Yang, Q.; Devic, T.; Maurin, G.; Horcajada, P.; Llewellyn, P. L.; Yot, P.; Serre, C.; Filinchuk, Y.; Fajula, F.; Férey, G.; Trens, P. Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption. J. Phys. Chem. C 2011, 115, 18683–18695.
- 125 Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 2013, 340, 960–964.
- 126 Jaffe, A.; Ziebel, M. E.; Halat, D. M.; Biggins, N.; Murphy, R. A.; Chakarawet, K.; Reimer, J. A.; Long, J. R. Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal-Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 14627–14637.
- 127 Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M.; Llewellyn, P. L.; Masciocchi, N.; Long, J. R. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 2015, 527, 357–361.
- 128 Reed, D. A.; Keitz, B. K.; Oktawiec, J.; Mason, J. A.; Runcevski, T.; Xiao, D. J.; Darago, L. E.; Crocella, V.; Bordiga, S.; Long, J. R. A spin transition mechanism for cooperative adsorption in metal-organic frameworks. Nature 2017, 550, 96–100.
- 129 Xie, L. S.; Sun, L.; Wan, R.; Park, S. S.; DeGayner, J. A.; Hendon, C. H.; Dinca, M. Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal-Organic Framework. J. Am. Chem. Soc. 2018, 140, 7411–7414.
- 130 Makal, T. A.; Li, J. R.; Lu, W.; Zhou, H. C. Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761–7779.
- 131 Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322.
- 132 Bloch, E. D.; Queen, W. L.; Chavan, S.; Wheatley, P. S.; Zadrozny, J. M.; Morris, R.; Brown, C. M.; Lamberti, C.; Bordiga, S.; Long, J. R. Gradual release of strongly bound nitric oxide from Fe2(NO)2(dobdc). J. Am. Chem. Soc. 2015, 137, 3466–3469.
- 133 Sun, Y. Y.; Kim, Y. H.; Lee, K.; West, D.; Zhang, S. B. Altering the spin state of transition metal centers in metal-organic frameworks by molecular hydrogen adsorption: a first-principles study. Phys. Chem. Chem. Phys. 2011, 13, 5042–5046.
- 134 Liu, S.-Y.; Kundu, P.; Huang, T.-W.; Chuang, Y.-J.; Tseng, F.-G.; Lu, Y.; Sui, M.-L.; Chen, F.-R. Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 2017, 31, 218–224.
- 135 Chalk, S. G.; Miller, J. F. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J. Power Sources 2006, 159, 73–80.
- 136 Levine, D. J.; Runcevski, T.; Kapelewski, M. T.; Keitz, B. K.; Oktawiec, J.; Reed, D. A.; Mason, J. A.; Jiang, H. Z.; Colwell, K. A.; Legendre, C. M.; FitzGerald, S. A.; Long, J. R. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. J. Am. Chem. Soc. 2016, 138, 10143–10150.
- 137 Cha, M.-H.; Nguyen, M. C.; Lee, Y.-L.; Im, J.; Ihm, J. Iron-Decorated, Functionalized Metal Organic Framework for High-Capacity Hydrogen Storage: First-Principles Calculations. J. Phys. Chem. C 2010, 114, 14276–14280.
- 138 Lee, J. H.; Siegelman, R. L.; Maserati, L.; Rangel, T.; Helms, B. A.; Long, J. R.; Neaton, J. B. Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal-organic frameworks. Chem. Sci. 2018, 9, 5197–5206.
- 139 Wongsakulphasatch, S.; Kiatkittipong, W.; Saupsor, J.; Chaiwiseshphol, J.; Piroonlerkgul, P.; Parasuk, V.; Assabumrungrat, S. Effect of Fe open metal site in metal-organic frameworks on post- combustion CO2 capture performance. Greenhouse Gas. Sci. Technol. 2017, 7, 383–394.
- 140 Devic, T.; Salles, F.; Bourrelly, S.; Moulin, B.; Maurin, G.; Horcajada, P.; Serre, C.; Vimont, A.; Lavalley, J.-C.; Leclerc, H.; Clet, G.; Daturi, M.; Llewellyn, P. L.; Filinchuk, Y.; Férey, G. Effect of the organic functionalization of flexible MOFs on the adsorption of CO2. J. Mater. Chem. 2012, 22, 10266–10273.
- 141 Kim, H.; Jung, Y. Can Metal-Organic Framework Separate 1-Butene from Butene Isomers? J. Phys. Chem. Lett. 2014, 5, 440–446.
- 142 Bachman, J. E.; Kapelewski, M. T.; Reed, D. A.; Gonzalez, M. I.; Long, J. R. M2(m-dobdc) (M = Mn, Fe, Co, Ni) Metal-Organic Frameworks as Highly Selective, High-Capacity Adsorbents for Olefin/Paraffin Separations. J. Am. Chem. Soc. 2017, 139, 15363–15370.
- 143 Peng, J.; Xian, S.; Xiao, J.; Huang, Y.; Xia, Q.; Wang, H.; Li, Z. A supported Cu(I)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem. Eng. J. 2015, 270, 282–289.
- 144 Johari, N. A.; Yusof, N.; Lau, W. J.; Abdullah, N.; Salleh, W. N. W.; Jaafar, J.; Aziz, F.; Ismail, A. F. Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment. Sep. Purif. Technol. 2021, 270, 118819.
- 145 Gao, D.-Y.; Liu, Z.; Cheng, Z.-L. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity- driven oil/water separation. J. Environ. Chem. Eng. 2022, 10, 107904.
- 146 Feng, Y.; Wang, Z.; Fan, W.; Kang, Z.; Feng, S.; Fan, L.; Hu, S.; Sun, D. Engineering the pore environment of metal–organic framework membranes via modification of the secondary building unit for improved gas separation. J. Mater. Chem. A 2020, 8, 13132–13141.
- 147 Li, L.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 2018, 362, 443–446.
- 148 Mei, L.; Wu, Y.; Zhou, X.; Yan, J.; Xu, F.; Li, Z. Adsorption performance of MIL-100(Fe) for separation of olefin–paraffin mixtures. J. Taiwan Inst. Chem. Eng. 2017, 70, 74–78.
- 149 Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Catalytic properties of MIL-101. Chem. Commun. 2008, 4192–4194.
- 150 Feng, D.; Chung, W. C.; Wei, Z.; Gu, Z. Y.; Jiang, H. L.; Chen, Y. P.; Darensbourg, D. J.; Zhou, H. C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 2013, 135, 17105–17110.
- 151 Han, W.; Ma, X.; Wang, J.; Leng, F.; Xie, C.; Jiang, H. L. Endowing Porphyrinic Metal-Organic Frameworks with High Stability by a Linker Desymmetrization Strategy. J. Am. Chem. Soc. 2023, 145, 9665–9671.
- 152 Feng, D.; Gu, Z. Y.; Chen, Y. P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H. C. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology. J. Am. Chem. Soc. 2014, 136, 17714–17717.
- 153 Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Wang, H. Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity. Environ. Sci. : Nano 2018, 5, 599–615.
- 154 Xu, C.; Pan, Y.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on Visible-Light Photocatalytic C-H Oxidation over Metal-Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.
- 155 Wang, X.; Ma, Y.; Jiang, J.; Li, M.; Li, T.; Li, C.; Dong, S. Cl-based functional group modification MIL-53(Fe) as efficient photocatalysts for degradation of tetracycline hydrochloride. J. Hazard. Mater. 2022, 434, 128864.
- 156 Yang, M.; Zhou, Y.-N.; Cao, Y.-N.; Tong, Z.; Dong, B.; Chai, Y.-M. Advances and Challenges of Fe-MOFs Based Materials as Electrocatalysts for Water Splitting. Appl. Mater. Today 2020, 20, 100692.
- 157 Wang, S. S.; Jiao, L.; Qian, Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Boosting Electrocatalytic Hydrogen Evolution over Metal-Organic Frameworks by Plasmon-Induced Hot-Electron Injection. Angew. Chem. Int. Ed. 2019, 58, 10713–10717.
- 158 Senthil Raja, D.; Lin, H.-W.; Lu, S.-Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 2019, 57, 1–13.
- 159 Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J. Hazard. Mater. 2017, 324, 665–672.
- 160 Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307–10310.
- 161 Cheng, H.; Liu, Y.; Hu, Y.; Ding, Y.; Lin, S.; Cao, W.; Wang, Q.; Wu, J.; Muhammad, F.; Zhao, X.; Zhao, D.; Li, Z.; Xing, H.; Wei, H. Monitoring of Heparin Activity in Live Rats Using Metal-Organic Framework Nanosheets as Peroxidase Mimics. Anal. Chem. 2017, 89, 11552–11559.
- 162 Zhang, X.; Yang, Y.; Song, L.; Wang, Y.; He, C.; Wang, Z.; Cui, L. High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol. Catal. 2018, 447, 80–89.
- 163 Chen, J.; Qin, C.; Mou, Y.; Cao, Y.; Chen, H.; Yuan, X.; Wang, H. Linker regulation of iron-based MOFs for highly effective Fenton-like degradation of refractory organic contaminants. Chem. Eng. J. 2023, 459, 141588.
- 164 Jia, J.; Xu, F.; Long, Z.; Hou, X.; Sepaniak, M. J. Metal-organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+. Chem. Commun. 2013, 49, 4670–4672.
- 165 Deng, K.; Hou, Z.; Li, X.; Li, C.; Zhang, Y.; Deng, X.; Cheng, Z.; Lin, J. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci. Rep. 2015, 5, 7851.
- 166 Gao, X.; Cui, R.; Song, L.; Liu, Z. Hollow structural metal-organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans. 2019, 48, 17291–17297.
- 167 Xie, W.; Tian, M.; Luo, X.; Jiang, Y.; He, N.; Liao, X.; Liu, Y. A dual-mode fluorescent and colorimetric immunoassay based on in situ ascorbic acid-induced signal generation from metal-organic frameworks. Sens. Actuators B: Chem. 2020, 302, 127180.
- 168 Taylor-Pashow, K. M.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.
- 169 Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.