Design and Synthesis of Al7Ni2 Heterometallic Clusters Based on Metal Substitution and Ligands Protection Strategies†
Ya-Jie Liu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of Chinese Academy of Sciences, Beijing, 100049 China
† Dedicated to the Special Issue of Emerging Investigators in 2022.
‡ These authors contributed equally to this work.
Search for more papers by this authorLi-Min Cui
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of Chinese Academy of Sciences, Beijing, 100049 China
† Dedicated to the Special Issue of Emerging Investigators in 2022.
‡ These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Wei-Hui Fang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]Search for more papers by this authorJian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorYa-Jie Liu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of Chinese Academy of Sciences, Beijing, 100049 China
† Dedicated to the Special Issue of Emerging Investigators in 2022.
‡ These authors contributed equally to this work.
Search for more papers by this authorLi-Min Cui
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of Chinese Academy of Sciences, Beijing, 100049 China
† Dedicated to the Special Issue of Emerging Investigators in 2022.
‡ These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Wei-Hui Fang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]Search for more papers by this authorJian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorComprehensive Summary
The synthesis of heterometallic aluminum-based materials is challenging yet attractive, due to their potential applications in optics, catalysis, magnetism and semiconductor device. We have now successfully synthesized two Al7Ni2 heterometallic clusters bearing different peripheral alkoxide ligands through a heterometal substitution strategy. Single crystal structure analysis shows that they are isostructural, only with slight differences in the number of OH and guests. We found that benzyl alkoxides protected Al7Ni2 cluster compound is more stable in H2O and various organic solvents when compared with ethoxides coordinated one. Moreover, it can be used as a reliable catalyst in aldol condensation reactions with higher activity. This work provides a new method for the design of stable crystalline heterometallic aluminum oxo compounds and reveals their excellent catalysis performance.
Supporting Information
Filename | Description |
---|---|
cjoc202200592-sup-0001-Supinfo.pdfPDF document, 2.2 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Ritleng, V.; Chetcuti, M. J. Hydrocarbyl Ligand Transformations on Heterobimetallic Complexes. Chem. Rev. 2007, 107, 797–858.
- 2 Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28–126.
- 3 Su, Y. H.; Bao, S. S.; Zheng, L. M. Heterometallic 3d-4f coordination polymers based on 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonate). Inorg. Chem. 2014, 53, 6042–6047.
- 4 Wilson, R. J.; Lichtenberger, N.; Weinert, B.; Dehnen, S. Intermetalloid and Heterometallic Clusters Combining p-Block (Semi)Metals with d- or f-Block Metals. Chem. Rev. 2019, 119, 8506–8554.
- 5Perrotta, A. J. Recent Advances in Alumina. Materials Science and Engineering Serving Society, Elsevier Science B.V., Amsterdam, 1998, pp. 40–51.
10.1016/B978-044482793-7/50014-X Google Scholar
- 6 Mohammadnezhad, G.; Amini, M. M.; Khavasi, H. R. A single source precursor for low temperature processing of nanocrystalline MgAl2O4 spinel: synthesis and characterization of [MgAl2(μ3-O)(μ2-OiPr)4(OiPr)2]4. Dalton Trans. 2010, 39, 10830–10832.
- 7 Gusmano, G.; Montesperelli, G.; Traversa, E. Humidity-sensitive electrical properties of MgA12O4 thin films. Sens. Actuators, B 1993, 13-14, 525–521.
- 8
Zhang, H.-L.; Zhai, Y.-Q.; Qin, L.; Ungur, L.; Nojiri, H.; Zheng, Y.-Z. Single-Molecule Toroic Design through Magnetic Exchange Coupling. Matter 2020, 2, 1481–1493.
10.1016/j.matt.2020.02.021 Google Scholar
- 9 Weis, P.; Hettich, C.; Kratzert, D.; Krossing, I. Homoleptic Silver Complexes of the Cages P4Se3 and As4S3. Eur. J. Inorg. Chem. 2019, 1657–1668.
- 10 Malinowski, P. J.; Himmel, D.; Krossing, I. Silver Complexes of Dihalogen Molecules. Angew. Chem. Int. Ed. 2016, 55, 9259–9261.
- 11 Suslova, E.; Seisenbaeva, G. A.; Kessler, V. G. Synthesis and X-ray single crystal study of Co2Al2(OiPr)6(acac)4—first representative of a new structure type for the heterometallic alkoxide complexes. Inorg. Chem. Commun. 2002, 5, 946–948.
- 12 Westin, G.; Moustiakimov, M.; Kritikos, M. Synthesis, Characterization, and Properties of Three Europium 2-Propoxides: [Eu4(OPri)10(HOPri)3]·2HOPri, Eu5O(OPri)13, and EuAl3(OPri)12. Inorg. Chem. 2002, 41, 3249–3258.
- 13 Li, Y.; Zhang Y.; Kang, Y.; Fang, W.-H. Stepwise assembly of heterometallic aluminum oxo clusters. J. Solid State Chem. 2022, 306, 122763.
- 14 Wang, S.-T.; Liu, C.-H.; Zheng, C.; Li, D.-J.; Fang, W.-H.; Zhang, J. Heterometallic Al6Zn12 nano-plate with π-conjugated ligand: synthesis and nonlinear absorption properties. Chem. Commun. 2021, 57, 12820–12823.
- 15 Liu, Y.-J.; Geng, L.; Kang, Y.; Fang, W.-H.; Zhang, J. Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity. Chinese J. Catal. 2021, 42, 1332–1337.
- 16 Palacios, M. A.; Moreno Pineda, E.; Sanz, S.; Inglis, R.; Pitak, M. B.; Coles, S. J.; Evangelisti, M.; Nojiri, H.; Heesing, C.; Brechin, E. K.; Schnack, J.; Winpenny, R. E. P. Copper Keplerates: High-Symmetry Magnetic Molecules. ChemPhysChem 2016, 17, 55–60.
- 17 Zhang, Y.-Q.; Zhou, L.-Y.; Ma, Y.-Y.; Dastafkan, K.; Zhao, C.; Wang, L.-Z.; Han, Z.-G. Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst. Chem. Sci. 2021, 12, 1886–1890.
- 18 Hicks, J.; Vasko, P.; Heilmann, A.; Goicoechea, J. M.; Aldridge, S. Arene C-H Activation at Aluminium(I): meta Selectivity Driven by the Electronics of SNAr Chemistry. Angew. Chem. Int. Ed. 2020, 59, 20376–20380.
- 19 Hu, X.-M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M.-M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M.; Beller, M.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catal. 2018, 8, 6255–6264.
- 20 Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.
- 21 Gao, L. J.; Fu, Q.; Wei, M. M.; Zhu, Y. F.; Liu, Q.; Crumlin, E.; Liu, Z.; Bao, X. H. Enhanced Nickel-Catalyzed Methanation Confined under Hexagonal Boron Nitride Shells. ACS Catal. 2016, 6, 6814–6822.
- 22 Seo, J. G.; Youn, M. H.; Lee, H.-I.; Kim, J. J.; Yang, E.; Chung, J. S.; Kim, P.; Song, I. K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–alumina xerogel catalysts: Effect of nickel content. Chem. Eng. J. 2008, 141, 298–304.
- 23 Hwang, S.; Lee, J.; Hong, U. G.; Seo, J. G.; Jung, J. C.; Koh, D. J.; Lim, H.; Byun, C.; Song, I. K. Methane production from carbon monoxide and hydrogen over nickel–alumina xerogel catalyst: Effect of nickel content. J. Ind. Eng. Chem. 2011, 17, 154–157.
- 24 Dong, C. L.; Wu, Y. S.; Wang, H. T.; Peng, J. B.; Li, Y. Z.; Samart, C.; Ding, M. Y. Facile and Efficient Synthesis of Primary Amines via Reductive Amination over a Ni/Al2O3 Catalyst. ACS Sustainable Chem. Eng. 2021, 9, 7318–7327.
- 25 Hahn, G.; Kunnas, P.; de Jonge, N.; Kempe, R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2019, 2, 71–77.
- 26 Küsel, S.; Krautscheid, H. Synthesis, Crystal Structures, and Thermolysis Studies of Heteronuclear Transition Metal Aluminum Alcoholates. Z. Anorg. Allg. Chem. 2020, 646, 1449–1457.
- 27 Veith, M.; Valtchev, K.; Huch, V. Tetraalkoxyaluminates of Nickel(II), Copper(II), and Copper(I). Inorg. Chem. 2008, 47, 1204–1217.
- 28 Kessler, V. G.; Seisenbaeva, G. A. Preparation of Powders and Films of NiAl2O4 Spinel from a Structurally Characterized Molecular Precursor, NiAl2(acac)4(OiPr)4. J. Sol-Gel Sci. Techn. 2004, 31, 63–66.
- 29 Kessler, V. G.; Gohil, S.; Parola, S. Interaction of some divalent metal acetylacetonates with Al, Ti, Nb and Ta isopropoxides. Factors influencing the formation and stability of heterometallic alkoxide complexes. Dalton Trans. 2003, 544–550.
- 30 Veith, M.; Valtchev, K.; Huch, V. Ein neuer Aluminium/Nickel/ Oxo-Cluster: [Ni(acac)OAl(OtBu)2]4. Z. Anorg. Allg. Chem. 2003, 629, 569–574.
- 31 Veith, M.; Smail-Bubel, H.; Nadig, S.; Huch, V. Syntheses and Structures of Acetyl-Acetonato-Alumo-Diphenylsilanolates with Magnesium(II), Iron(II), Iron(III), Cobalt(II), and Nickel(II). Z. Anorg. Allg. Chem. 2016, 642, 204–210.
- 32 Azoulay, J. D.; Koretz, Z. A.; Wu, G.; Bazan, G. C. Well-defined cationic methallyl α-keto-β-diimine complexes of nickel. Angew. Chem. Int. Ed. 2010, 49, 7890–7894.
- 33 Ogoshi, S.; Ueta, M.; Arai, T.; Kurosawa, H. AlMe3-Promoted Oxidative Cyclization of η2-Alkene and η2-Ketone on Nickel(0). Observation of Intermediate in Methyl Transfer Process. J. Am. Chem. Soc. 2005, 127, 12810–12811.
- 34 Ohashi, M.; Saijo, H.; Arai, T.; Ogoshi, S. Nickel(0)-Catalyzed Formation of Oxaaluminacyclopentenes via an Oxanickelacyclopentene Key Intermediate: Me2AlOTf-Assisted Oxidative Cyclization of an Aldehyde and an Alkyne with Nickel(0). Organometallics 2010, 29, 6534–6540.
- 35 Fraser, H. W. L.; Nichol, G. S.; Uhrín, D.; Nielsen, U. G.; Evangelisti, M.; Schnack, J.; Brechin, E. K. Order in disorder: solution and solid-state studies of [MIII2MII5] wheels (MIII = Cr, Al; MII = Ni, Zn). Dalton Trans. 2018, 47, 11834–11842.
- 36 Zhang, X.-Z.; Wang, X.-F.; Fang, W.-H.; Zhang, J. Synthesis, Structures, and Fluorescence Properties of Dimeric Aluminum Oxo Clusters. Inorg. Chem. 2021, 60, 7089–7093.
- 37 Geng, L.; Liu, C.-H.; Wang, S.-T.; Fang, W.-H.; Zhang, J. Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization. Angew. Chem. Int. Ed. 2020, 59, 16735–16740.
- 38 Yao, S. Y.; Fang, W.-H.; Sun, Y. Y.; Wang, S.-T.; Zhang, J. Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture. J. Am. Chem. Soc. 2021, 143, 2325–2330.
- 39 Dang, D. B.; Wu, P. Y.; He, C.; Xie, Z.; Duan, C. Y. Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc. 2010, 132, 14321–14323.
- 40 Barrett, C. J.; Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl. Catal. B-Environ. 2006, 66, 111–118.
- 41 Kikhtyanin, O.; Kubička, D.; Čejka, J. Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal. Today 2015, 243, 158–162.
- 42 Dai, J. J.; Li, K. P.; Feng, Z. J.; Xu, J.; Chen, Y.; Zhang, H. B.; Zhang, Z. J. Evidence on Primary Pore Size Dependence of C–C Bond Coupling Inside Zr-Based Metal–Organic Frameworks. J. Phys. Chem. C 2020, 124, 24713–24722.
- 43 Deng, Q.; Nie, G. K.; Pan, L.; Zou, J.-J.; Zhang, X. W.; Wang, L. Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem. 2015, 17, 4473–4481.
- 44 Rojas-Buzo, S.; García-García, P.; Corma, A. Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chem. 2018, 20, 3081–3091.