Targeted Management of Perovskite Film by Co(II) Sulfophenyl Porphyrin for Efficient and Stable Solar Cells†
Xiao-Xia Feng
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
Search for more papers by this authorXudong Lv
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
Search for more papers by this authorCorresponding Author
Jing Cao
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yu Tang
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiao-Xia Feng
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
Search for more papers by this authorXudong Lv
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
Search for more papers by this authorCorresponding Author
Jing Cao
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yu Tang
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 China
E-mail: [email protected]; [email protected]Search for more papers by this author†Dedicated to the 120th Anniversary of Northwest Normal University.
Comprehensive Summary
In the lead halide perovskite solar cells (PSCs), the redox reaction of I– and Pb2+ ions in perovskite materials under the fabrication and operation processes causes the formation of defects to destroy the cell efficiency and long-term stability. Herein, we have employed a Co(II) sulfophenyl porphyrin (CoTPPS) to modify the perovskite film. The sulfonic group could coordinate with Pb2+ to efficiently passivate the uncoordinated Pb2+. Additionally, Co2+ ions in CoTPPS could react with I2 generated under the thermal and light stress to yield the Co3+ and I–, thus achieving the regeneration of I– in perovskite film. Therefore, the CoTPPS could realize the targeted management of the imperfections in perovskite film. As a result, the modified PSCs reveal the remarkably enhanced cell performance. More importantly, the CoTPPS modified device retains 75% of its initial efficiency value storing at 85°C for 2000 h and about 70% of its efficiency when being continuously illuminated at a simulated sunlight for 1200 h. This strategy tackles the chemical reaction and inhibits the defect generation, thus improving the operational stability and efficiency of PSCs.
Supporting Information
Filename | Description |
---|---|
cjoc202200468-sup-0001-Supinfo.pdfPDF document, 2.4 MB |
Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P.; Bulovic, V.; Shin, S. S.; Bawendi, M. G.; Seo, J. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.
- 2 Shen, Z.; Han, Q.; Luo, X.; Shen, Y.; Wang, T.; Zhang, C.; Wang, Y.; Chen, H.; Yang, X.; Zhang, Y.; Han, L. Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy Environ. Sci. 2022, 15, 1078–1085.
- 3 Jiang, S.; Bai, Y. M.; Ma, Z. W.; Jin, S. L.; Zou, C.; Tan, Z. Recent advances of monolithic all-perovskite tandem solar cells: from materials to devices. Chin. J. Chem. 2022, 40, 856–871.
- 4 Liu, X.; Yang, Z.; Ge, C.; Li, H.; Hao, M.; Wan, C.; Song, Y.; Li, B.; Dong, Q. Multiple Hydrogen Bond-Induced Structural Distortion for Broadband White-Light Emission in Two-Dimensional Perovskites. CCS Chem. 2021, 3, 2576–2583.
- 5 Li, X.; Zhang, W.; Guo, X.; Lu, C.; Wei, J.; Fang, J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437.
- 6 Qian, X. Y.; Tang, Y. Y.; Zhou, W.; Shen, Y.; Tang, J. X. Strategies to Improve Luminescence Efficiency and Stability of Blue Perovskite Light-Emitting Devices. Small Sci. 2021, 1, 2000048.
- 7 Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; Xu, Z.; Li, N.; Liu, Z.; Chen, Q.; Sun, L.-D.; Yan, C.-H. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270.
- 8 Zhu, E.; Zhao, Y.; Dai, Y.; Wang, Q.; Dong, Y.; Chen, Q.; Li, Y. Heterojunction-Type Photocatalytic System Based on Inorganic Halide Perovskite CsPbBr3. Chin. J. Chem. 2020, 38, 1718–1722.
- 9 Wang, S. H.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2016, 2, 16195.
- 10 Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning, D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P.; Yang, J. L.; Zhu, J. H.; Wang, M. H.; Tan, S.; Yavuz, I.; Houk, K. N.; Yang, Y. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513.
- 11 Zhao, Y.; Heumueller, T.; Zhang, J.; Luo, J.; Kasian, O.; Langner, S.; Kupfer, C.; Liu, B.; Zhong, Y.; Elia, J.; Osvet, A.; Wu, J.; Liu, C.; Wan, Z.; Jia, C.; Li, N.; Hauch, J.; Brabec, C. J. A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 2021, 7, 144–152.
- 12 Ge, C.; Yang, Z.; Liu, X.; Song, Y.; Wang, A.; Dong, Q. Stable and Highly Flexible Perovskite Solar Cells with Power Conversion Efficiency Approaching 20% by Elastic Grain Boundary Encapsulation. CCS Chem. 2021, 3, 2035–2044.
- 13 Huang, J. C.; Yang, J.; Sun, H. L.; Feng, K.; Guo, X. G. A Cost-effective D-A-D Type Hole-transport Material Enabling 20% Efficiency Inverted Perovskite Solar Cells. Chin. J. Chem. 2021, 39, 1545–1552.
- 14 Jiang, X.; Wang, K.; Wang, H.; Duan, L.; Du, M.; Wang, L.; Cao, Y.; Liu, L.; Pang, S.; Liu, S. F. Nanoconfined Crystallization for High-Efficiency Inorganic Perovskite Solar Cells. Small Sci. 2021, 1, 2000054.
- 15 Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.
- 16 Swartwout, R.; Hoerantner, M. T.; Bulović, V. Scalable deposition methods for large-area production of perovskite thin films. Energy Environ. Sci. 2019, 2, 119–143.
- 17 Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407.
- 18 Zhu, T.; Yang, Y.; Zhou, S.; Yao, X.; Liu, L.; Hu, W.; Gong, X. Bulk heterojunction perovskite solar cells incorporated with solution-processed TiOx nanoparticles as the electron acceptors. Chin. Chem. Lett. 2020, 31, 2249–2253.
- 19 Doherty, T. A. S.; Winchester, A. J.; Macpherson, S.; Johnstone, D. N.; Pareek, V.; Tennyson, E. M.; Kosar, S.; Kosasih, F. U.; Anaya, M.; Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Wong, E. L.; Madeo, J.; Chiang, Y. H.; Park, J. S.; Jung, Y. K.; Petoukhoff, C. E.; Divitini, G.; Man, M. K. L.; Ducati, C.; Walsh, A.; Midgley, P. A.; Dani, K. M.; Stranks, S. D. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 2020, 580, 360–366.
- 20 Tennyson, E. M.; Doherty, T. A. S.; Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 2019, 4, 573–587.
- 21 Ball, J. M. P. Annamaria. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1, 16149.
- 22 Zhang, C.; Liu, X.; Chen, J.; Lin, J. Solution and Solid-Phase Growth of Bulk Halide Perovskite Single Crystals. Chin. J. Chem. 2021, 39, 1353–1363.
- 23 Yuan, Y. B.; Wang, Q.; Shao, Y. C.; Lu, H. D.; Li, T.; Gruverman, A.; Huang, J. S. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 2016, 6, 1501803.
- 24 Li, Y. Z.; Xu, X. M.; Wang, C. C.; Ecker, B.; Yang, J. L.; Huang, J. S.; Gao, Y. L. Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 2017, 121, 3904–3910.
- 25 Wang, Z.; Shi, Z. J.; Li, T. T.; Chen, Y. H.; Huang, W. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew. Chem. Int. Ed. 2017, 56, 1190–1212.
- 26 Hu, Q.; Chen, W.; Yang, W.; Li, Y.; Zhou, Y.; Larson, B. W.; Johnson, J. C.; Lu, Y.-H.; Zhong, W.; Xu, J.; Klivansky, L.; Wang, C.; Salmeron, M.; Djurišić, A. B.; Liu, F.; He, Z.; Zhu, R.; Russell, T. P. Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule 2020, 4, 1–19.
- 27 Wang, Q.; Chen, B.; Liu, Y.; Deng, Y. H.; Bai, Y.; Dong, Q. F.; Huang, J. S. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 2017, 10, 516–522.
- 28 Misra, R. K.; Aharon, S.; Li, B. L.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326–330.
- 29 Meng, L.; You, J.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 2018, 9, 5265.
- 30 Zhu, L.; Lu, Q.; Li, C.; Wang, Y.; Deng, Z. Graded interface engineering of 3D/2D halide perovskite solar cells through ultrathin (PEA)2PbI4 nanosheets. Chin. Chem. Lett. 2021, 32, 2259–2262.
- 31 Xiao, G.-B.; Yu, Z.-F.; Cao, J.; Tang, Y. Encapsulation and Regeneration of Perovskite Film by in situ Forming Cobalt Porphyrin Polymer for Efficient Photovoltaics. CCS Chem. 2020, 2, 488–494.
- 32 Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406–3410.
- 33 Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 2018, 6, 9604–9612.
- 34 Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.
- 35 Xu, F.; Liu, J.; Subbiah, A. S.; Liu, W.; Kang, J.; Harrison, G. T.; Yang, X.; Isikgor, F. H.; Aydin, E.; De Bastiani, M.; De Wolf, S. Potassium Thiocyanate-Assisted Enhancement of Slot-Die-Coated Perovskite Films for High-Performance Solar Cells. Small Sci. 2021, 1, 2000044.
- 36 Zheng, X. P.; Chen, B.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y.; Wei, H. T.; Zeng, X. C.; Huang, J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.
- 37 Ono, L. K.; Liu, S. Z. F.; Qi, Y. B. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 2019, 58, 4466–4483.
- 38 Wang, M.; Zhao, Y.; Jiang, X.; Yin, Y.; Yavuz, I.; Zhu, P.; Zhang, A.; Han, G. S.; Jung, H. S.; Zhou, Y.; Yang, W.; Bian, J.; Jin, S.; Lee, J.-W.; Yang, Y. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule 2022, 6, 1032–1048.
- 39 Liu, X.; Min, J.; Chen, Q.; Liu, T.; Qu, G.; Xie, P.; Xiao, H.; Liou, J.-J.; Park, T.; Xu, Z.-X. Synergy Effect of a π-Conjugated Ionic Compound: Dual Interfacial Energy Level Regulation and Passivation to Promote Voc and Stability of Planar Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, e202117303.
- 40 Li, X.; Chen, C.-C.; Cai, M. L.; Hua, X.; Xie, F. X.; Liu, X.; Hua, J. L.; Long, Y. T.; Tian, H.; Han, L. Y. Efficient passivation of hybrid perovskite solar cells using organic dyes with -COOH functional group. Adv. Energy Mater. 2018, 8, 1800715.
- 41 Zheng, X. P.; Deng, Y. H.; Chen, B.; Wei, H. T.; Xiao, X.; Fang, Y. J.; Lin, Y. Z.; Yu, Z. H.; Liu, Y.; Wang, Q.; Huang, J. S. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 2018, 30, 1803428.
- 42 You, S.; Wang, H.; Bi, S.; Zhou, J.; Qin, L.; Qiu, X.; Zhao, Z.; Xu, Y.; Zhang, Y.; Shi, X.; Zhou, H.; Tang, Z. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Adv. Mater. 2018, 1706924.
- 43
Feng, X.; Chen, R.; Nan, Z.; Lv, X.; Meng, R.; Cao, J.; Tang, Y. Perfection of perovskite grain boundary passivation by Eu-Porphyrin complex for overall-stable perovskite solar cells. Adv. Sci. 2019, 6, 1802040.
10.1002/advs.201802040 Google Scholar
- 44 Xiao, G.-B.; Wang, L.-Y.; Mu, X.-J.; Zou, X.-X.; Wu, Y.-Y.; Cao, J. Lead and Iodide Fixation by Thiol Copper(II) Porphyrin for Stable and Environmental-Friendly Perovskite Solar Cells. CCS Chem. 2021, 3, 25–36.
- 45 Gao, K.; Zhu, Z. L.; Xu, B.; Jo, S. B.; Kan, Y. Y.; Peng, X. B.; Jen, A. K. Y. Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 2017, 29, 1703980.
- 46 Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.
- 47 Coleyshaw, E. E.; Griffith, W. P.; Bowell, R. J. Fourier-transform Raman spectroscopy of minerals. Spectrochim. Acta 1994, 50A, 1909–1918.
- 48
Frost, R. L.; Kloprogge, J. T.; Williams, P. A. Raman spectroscopy of lead sulphate-carbonate minerals - implications for hydrogen bonding. Neues Jb. Miner. Monat. 2003, 2003, 529–542.
10.1127/0028-3649/2003/2003-0529 Google Scholar
- 49 Birkefeld, A.; Schulin, R.; Nowack, B. In situ transformations of fine lead oxide particles in different soils. Environ. Pollut. 2007, 145, 554–561.
- 50 Zhang, H.; Wu, Y.; Shen, C.; Li, E. P.; Yan, C.; Zhang, W.; Tian, H.; Han, L.; Zhu, W. Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Adv. Energy Mater. 2019, 9, 1803573.
- 51 Wu, W. Q.; Yang, Z. B.; Rudd, P. N.; Shao, Y. C.; Dai, X. Z.; Wei, H. T.; Zhao, J. J.; Fang, Y. J.; Wang, Q.; Liu, Y.; Deng, Y. H.; Xiao, X.; Feng, Y. X.; Huang, J. S. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 2019, 5, eaav8925.
- 52 Wu, S.; Liu, Q.; Zheng, Y.; Li, R.; Peng, T. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. J. Power Sources 2017, 359, 303–310.
- 53 Yang, Y. Q.; Wu, J. H.; Wang, X. B.; Guo, Q. Y.; Liu, X. P.; Sun, W. H.; Wei, Y. L.; Huang, Y. F.; Lan, Z.; Huang, M. L.; Lin, J. M.; Chen, H. W.; Wei, Z. H. Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv. Mater. 2019, 32, 1904347.
- 54 Cao, J.; Wu, B. H.; Chen, R. H.; Wu, Y. Y. Q.; Hui, Y.; Mao, B. W.; Zheng, N. F. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 2018, 30, 1705596.
- 55 Ko, J.; Ma, K.; Joung, J. F.; Park, S.; Bang, J. Ligand-Assisted Direct Photolithography of Perovskite Nanocrystals Encapsulated with Multifunctional Polymer Ligands for Stable, Full-Colored, High-Resolution Displays. Nano Lett. 2021, 21, 2288–2295.
- 56 Si, H.; Xu, C.; Ou, Y.; Zhang, G.; Fan, W.; Xiong, Z.; Kausar, A.; Liao, Q.; Zhang, Z.; Sattar, A.; Kang, Z.; Zhang, Y. Dual-passivation of ionic defects for highly crystalline perovskite. Nano Energy 2020, 68, 104320.
- 57 Chen, H.; Wei, Q.; Saidaminov, M. I.; Wang, F.; Johnston, A.; Hou, Y.; Peng, Z. J.; Xu, K. M.; Zhou, W. J.; Liu, Z. H.; Qiao, L.; Wang, X.; Xu, S. W.; Li, J. Y.; Long, R.; Ke, Y. Q.; Sargent, E. H.; Ning, Z. J. Efficient and stable inverted perovskite solar cells incorporating secondary amines. Adv. Mater. 2019, 31, e1903559.
- 58 Cai, F. L.; Cai, J. L.; Yang, L. Y.; Li, W.; Gurney, R. S.; Yi, H. N.; Iraqi, A.; Liu, D.; Wang, T. Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 2018, 45, 28–36.
- 59 Zhuang, J.; Mao, P.; Luan, Y. G.; Yi, X. H.; Tu, Z. Y.; Zhang, Y. Y.; Yi, Y. P.; Wei, Y. Z.; Chen, N. L.; Lin, T.; Wang, F. Y.; Li, C.; Wang, J. Z. Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 2019, 4, 2913–2921.
- 60 Feng, X.; Lv, X.; Liang, Q.; Cao, J.; Tang, Y. Diammonium porphyrin-Induced CsPbBr3 nanocrystals to stabilize perovskite films for efficient and stable solar cells. ACS Appl. Mater. Interfaces 2020, 12, 16236–16242.