Construction of a High-Quality Organic-Inorganic Hybrid Heterostructure and Its Photo-response Performance
Yadan Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
‡Y. Zhang and G. Yu contribute equally to this work.
Search for more papers by this authorGuanghua Yu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
‡Y. Zhang and G. Yu contribute equally to this work.
Search for more papers by this authorDi Xue
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJie Lu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorXing Meng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYao Yin
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorQi Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Zi Wang
Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lizhen Huang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lifeng Chi
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078 Macao, China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYadan Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
‡Y. Zhang and G. Yu contribute equally to this work.
Search for more papers by this authorGuanghua Yu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
‡Y. Zhang and G. Yu contribute equally to this work.
Search for more papers by this authorDi Xue
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJie Lu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorXing Meng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYao Yin
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorQi Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Zi Wang
Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lizhen Huang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lifeng Chi
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078 Macao, China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
The combination of metal oxide and organic semiconductor for constructing organic–inorganic hybrid heterostructure is promising to offer unique optoelectronic properties. However, the distinct difference in electron structure and processing technology of the two types of materials makes it usually difficult to fully deliver their complementary advantages. Herein, we report the construction of a high quality organic/In2O3 hybrid heterostructure presenting a good ambipolar transport with average electron mobility >1 cm2·V–1·s–1 and hole mobility up to 0.4 cm2·V–1·s–1, respectively, together with a high-gain inverter. In addition, the incorporation with organic film on top of In2O3 remarkably reduces the dark current, enabling the realization of high photoconductivity response with photosensitivity of two magnitudes higher than that of pure In2O3. The photoconductor and phototransistor of the hybrid structure demonstrate high photoresponsivity >103 AW–1 and detectivity up to 1014 Jones, demonstrating the promising functionality of such a high quality hybrid heterostructure.
Supporting Information
Filename | Description |
---|---|
cjoc202200447-sup-0001-Supinfo.pdfPDF document, 1.1 MB |
Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electro. 2018, 1, 30–39.
- 2 Ishida, K.; Meister, T.; Shabanpour, R.; Boroujeni, B. K.; Carta, C.; Cantarella, G.; Petti, L.; Mtozenrieder, N.; Salvatore, G. A.; Troster, G.; Ellinger, F. Radio frequency electronics in a-IGZO TFT technology. In 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2016, pp. 273–276.
- 3 Song, R. X.; Zhou, X.; Wang, Z.; Zhu, L. N.; Lu, J.; Xue, D.; Wang, Z. F.; Huang, L. Z.; Chi, L. F. High selective gas sensors based on surface modified polymer transistor. Org. Electro. 2021, 91, 106083.
- 4 Zhou, X.; Wang, Z.; Song, R.; Zhang, Y.; Zhu, L.; Xue, D.; Huang, L.; Chi, L. High performance gas sensors with dual response based on organic ambipolar transistors. J. Mater. Chem. C 2021, 9, 1584–1592.
- 5 Wang, W.; Wang, S.; Rastak, R.; Ochiai, Y.; Niu, S.; Jiang, Y.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N.; Yan, X.; Kwon, S.-K.; Miyakawa, M.; Zhang, Z.; Ning, R.; Foudeh, A. M.; Yun, Y.; Linder, C.; Tok, J. B. H.; Bao, Z. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electro. 2021, 4, 143–150.
- 6 Fang, L.; Dai, S.; Zhao, Y.; Liu, D.; Huang, J. Light-Stimulated Artificial Synapses Based on 2D Organic Field-Effect Transistors. Adv. Electro. Mater. 2019, 6, 1901217.
- 7 Yu, X.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396.
- 8 Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.
- 9 Reese, C.; Bao, Z. N. Organic single-crystal field-effect transistors. Mater. Today 2007, 10, 20–27.
- 10 Bao, Z. N.; Lovinger, A. J.; Dodabalapur, A. Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors. Adv. Mater. 1997, 9, 42–44.
- 11 Sirringhaus, H. Materials and Applications for Solution-Processed Organic Field-Effect Transistors. In Proceedings of the IEEE, Vol. 97, 2009, pp. 1570–1579.
- 12 Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267.
- 13 Braga, D.; Horowitz, G. High-Performance Organic Field-Effect Transistors. Adv. Mater. 2009, 21, 1473–1486.
- 14 Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 2012, 24, 2945–2986.
- 15 Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22.
- 16 Prušáková, L.; Hubík, P.; Aijaz, A.; Nyberg, T.; Kubart, T. Room Temperature Reactive Deposition of InGaZnO and ZnSnO Amorphous Oxide Semiconductors for Flexible Electronics. Coatings 2019, 10, 2.
- 17 Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.
- 18 Hoffman, R. L.; Norris, B. J.; Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82, 733–735.
- 19 Barquinha, P.; Pereira, L.; Gonçalves, G.; Martins, R.; Fortunato, E. Toward High-Performance Amorphous GIZO TFTs. J. Electrochem. Soc. 2009, 156, H161–H168.
- 20 Fortunato, E.; Gonçalves, A.; Pimentel, A.; Barquinha, P.; Gonçalves, G.; Pereira, L.; Ferreira, I.; Martins, R. Zinc oxide, a multifunctional material: from material to device applications. Appl. Phys. A 2009, 96, 197–205.
- 21 Dodabalapur, A.; Baumbach, J.; Baldwin, K.; Katz, H. E. Hybrid organic/inorganic complementary circuits. Appl. Phys. Lett. 1996, 68, 2246–2248.
- 22 Risteska, A.; Chan, K.-Y.; Anthopoulos, T. D.; Gordijn, A.; Stiebig, H.; Nakamura, M.; Knipp, D. Designing organic and inorganic ambipolar thin-film transistors and inverters: Theory and experiment. Org. Electro. 2012, 13, 2816–2824.
- 23 Smith, J.; Bashir, A.; Adamopoulos, G.; Anthony, J. E.; Bradley, D. D. C.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D. Air-Stable Solution-Processed Hybrid Transistors with Hole and Electron Mobilities Exceeding 2 cm2 V−1 s−1. Adv. Mater. 2010, 22, 3598–3602.
- 24 Wang, H.; Wang, Y.; Ni, Z.; Turetta, N.; Gali, S. M.; Peng, H.; Yao, Y.; Chen, Y.; Janica, I.; Beljonne, D.; Hu, W.; Ciesielski, A.; Samori, P. 2D MXene-Molecular Hybrid Additive for High-Performance Ambipolar Polymer Field-Effect Transistors and Logic Gates. Adv. Mater. 2021, 33, 2008215.
- 25 Li, M.; Wang, J.; Cai, X.; Liu, F.; Li, X.; Wang, L.; Liao, L.; Jiang, C. Organic-Inorganic Heterojunctions toward High-Performance Ambipolar Field-Effect Transistor Applications. Adv. Electro. Mater. 2018, 4, 1800211.
- 26Dhananjay; Ou, C.-W.; Yang, C.-Y.; Wu, M.-C.; Chu, C.-W. Ambipolar transport behavior in In2O3/pentacene hybrid heterostructure and their complementary circuits. Appl. Phys. Lett. 2008, 93, 033306.
- 27 Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.; Hebard, A. F.; Fleming, R. M. C60 thin film transistors. Appl. Phys. Lett. 1995, 67, 121–123.
- 28 Ji, S.; Wang, H.; Wang, T.; Yan, D. A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv. Mater. 2013, 25, 1755–1760.
- 29 Wang, C.; Zhang, X.; Hu, W. Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670.
- 30 Salehi, A.; Fu, X. Y.; Shin, D. H.; So, F. Recent Advances in OLED Optical Design. Adv. Funct. Mater. 2019, 29, 1808803.
- 31 Du, Q.; Qin, S.; Wang, Z.; Gan, Y.; Zhang, Y.; Fan, L.; Liu, Y.; Li, S.; Dong, R.; Liu, C.; Wang, W.; Wang, F. Highly Sensitive and Ultrafast Organic Phototransistor Based on Rubrene Single Crystals. ACS Appl. Mater. Interface 2021, 13, 57735–57742.
- 32 Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.
- 33 Akamatu, H.; Inokuchi, H.; Matsunaga, Y. Electrical conductivity of the perylene-bromine complex. Nature 1954, 173, 168–169.
- 34 Cai, Z., Liu, Z., Luo, H., Qi, P., Zhang, G.; Zhang, D. π-Extented Conjugated Polymers Entailing Pechmann Dye Moieties for Solution-Processed Ambipolar Organic Semiconductors. Chin. J. Chem. 2014, 32, 788–796.
- 35 Gao, W. T.; Zhu, L. Q.; Xiao, H.; Yu, F.; Tao, J.; Wan, D. Y.; Zhou, J. M. Organic/inorganic hybrid low-voltage flexible oxide transistor gated with biodegradable electrolyte. Org. Electro. 2018, 56, 82–88.
- 36 Chung, W.-Y.; Sakai, G.; Shimanoe, K.; Miura, N.; Lee, D.-D.; Yamazoe, N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens. Actuat. B 1998, 46, 139–145.
- 37 Dhananjay; Chu, C.-W. Realization of In2O3 thin film transistors through reactive evaporation process. Appl. Phys. Lett. 2007, 91, 132111.
- 38 Nakamura, K.; Sasaki, K.; Aikawa, S. Gas adsorption effects on electrical properties of amorphous In2O3 thin-film transistors under various environments. Jpn. J. Appl. Phys. 2020, 59, SIIG06.
- 39 Rim, Y. S.; Chen, H. J.; Zhu, B. W.; Bae, S. H.; Zhu, S. L.; Li, P. J.; Wang, I. C.; Yang, Y. Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications. Adv. Mater. Interfaces 2017, 4, 1700020.
- 40 Li, Y.; Zhao, C.; Zhu, D.; Cao, P.; Han, S.; Lu, Y.; Fang, M.; Liu, W.; Xu, W. Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors. Nanomaterials 2020, 10, 965.
- 41 Wang, L.; Yoon, M. H.; Lu, G.; Yang, Y.; Facchetti, A.; Marks, T. J. High-performance transparent inorganic-organic hybrid thin-film n-type transistors. Nat. Mater. 2006, 5, 893–900.
- 42 Wang, C.; Dong, H.; Jiang, L.; Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500.
- 43 Malchenko, S. N.; Lychkovsky, Y. N.; Baykov, M. V. In2O3-based gas sensors. Sens. Actuat. B 1993, 13, 159–161.
- 44 Qian, C.; Sun, J.; Kong, L.-a.; Fu, Y.; Chen, Y.; Wang, J.; Wang, S.; Xie, H.; Huang, H.; Yang, J.; Gao, Y. Multilevel Nonvolatile Organic Photomemory Based on Vanadyl-Phthalocyanine/para-Sexiphenyl Heterojunctions. ACS Photonics 2017, 4, 2573–2579.
- 45 Bierwagen, O. Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications. Semicond. Sci. Technol. 2015, 30, 024001.
- 46 Zhang, X.; Wang, Z.; Zhou, X.; Wang, Z.; Huang, L.; Chi, L. High-Performance Bottom-Contact Organic Thin-Film Transistors by Improving the Lateral Contact. Adv. Electro. Mater. 2017, 3, 1700128.
- 47 Wang, H.; Zhu, F.; Yang, J.; Geng, Y.; Yan, D. Weak Epitaxy Growth Affording High-Mobility Thin Films of Disk-Like Organic Semiconductors. Adv. Mater. 2007, 19, 2168–2171.
- 48 Yang, J.; Yan, D.; Jones, T. S. Molecular template growth and its applications in organic electronics and optoelectronics. Chem. Rev. 2015, 115, 5570–5603.
- 49 Dang, X., Jiang, X., Zhang, T.; Zhao, H., WO3 Inversce Opal Photonic Crystals: Unique Property, Synthetic Methods and Extensive Application. Chin. J. Chem. 2021, 39, 1706–1715
- 50 Raveendra Kiran, M.; Ulla, H.; Satyanarayan, M. N.; Umesh, G. Optoelectronic properties of hybrid diodes based on vanadyl-phthalocyanine and zinc oxide nanorods thin films. Opt. Mater. 2019, 96, 109348.
- 51 Li, D.; Du, J.; Tang, Y.; Liang, K.; Wang, Y.; Ren, H.; Wang, R.; Meng, L.; Zhu, B.; Li, Y. Flexible and Air-Stable Near-Infrared Sensors Based on Solution-Processed Inorganic–Organic Hybrid Phototransistors. Adv. Funct. Mater. 2021, 31, 2105887.
- 52 Hinderhofer, A.; Schreiber, F. Organic-organic heterostructures: concepts and applications. ChemPhysChem 2012, 13, 628–643.
- 53 Leydecker, T.; Wang, Z. M.; Torricelli, F.; Orgiu, E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem. Soc. Rev. 2020, 49, 7627–7670.
- 54 Wang, Y.; Wang, L.; Liu, F.; Peng, Z.; Zhang, Y.; Jiang, C. Organic-inorganic hybrid heterostructures towards long-wavelength photodetectors based on InGaZnO-Polymer. Org. Electro. 2020, 83, 105778.
- 55 Chen, J.; Ouyang, W.; Yang, W.; He, J. H.; Fang, X. Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Adv. Funct. Mater. 2020, 30, 1909909.
- 56 Ji, D.; Li, T.; Liu, J.; Amirjalayer, S.; Zhong, M.; Zhang, Z. Y.; Huang, X.; Wei, Z.; Dong, H.; Hu, W.; Fuchs, H. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat. Commun. 2019, 10, 12.
- 57 Li, G.; Xie, D.; Zhong, H.; Zhang, Z.; Fu, X.; Zhou, Q.; Li, Q.; Ni, H.; Wang, J.; Guo, E. J.; He, M.; Wang, C.; Yang, G.; Jin, K.; Ge, C. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 2022, 13, 1729.
- 58 Yoo, H.; Lee, I. S.; Jung, S.; Rho, S. M.; Kang, B. H.; Kim, H. J. A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions. Adv. Mater. 2021, 33, 2006091.
- 59 Du, L.; Luo, X.; Lv, W.; Zhao, F.; Peng, Y.; Tang, Y.; Wang, Y. High-performance organic broadband photomemory transistors exhibiting remarkable UV-NIR response. Phys. Chem. Chem. Phys. 2016, 18, 13108–13117.