Polymerization-Induced Self-Assembly for the Preparation of Poly(N,N-dimethylacrylamide)-b-Poly(4-tert-butoxystyrene-co-pentafluorostyrene) Particles with Inverse Bicontinuous Phases†
Xin Luo
Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Zesheng An
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]Search for more papers by this authorXin Luo
Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Zesheng An
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]Search for more papers by this author†Dedicated to the Special Issue of Polymer Synthesis.
Main observation and conclusion
Polymerization-induced self-assembly (PISA) is an effective method to prepare block copolymer (BCP) particles with various morphologies. However, BCPs with inverse bicontinuous phase structure have been rarely prepared via PISA. Herein, we report the preparation of particles, consisting of poly(N,N-dimethylacrylamide-b-poly(4-tert-butoxystyrene-co-pentafluorostyrene) BCP, with inverse bicontinuous phases via PISA in ethanol/water. The effects of solvent composition and the degree of polymerization of the core-forming were investigated. The bicontinuous structure of BCP particles was characterized by transmission electron microscopy.
Supporting Information
Filename | Description |
---|---|
cjoc202100134-sup-0001-Supinfo.pdfPDF document, 33.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Wong, C. K.; Qiang, X.; Müller, A. H. E.; Gröschel, A. H. Self-Assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211.
- 2 Ha, S.; La, Y.; Kim, K. T. Polymer Cubosomes: Infinite Cubic Mazes and Possibilities. Acc. Chem. Res. 2020, 53, 620–631.
- 3 La, Y.; Park, C.; Shin, T. J.; Joo, S. H.; Kang, S.; Kim, K. T. Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups. Nat. Chem. 2014, 6, 534–541.
- 4 La, Y.; An, T. H.; Shin, T. J.; Park, C.; Kim, K. T. A Morphological Transition of Inverse Mesophases of a Branched-Linear Block Copolymer Guided by Using Cosolvents. Angew. Chem. Int. Ed. 2015, 54, 10483–10487.
- 5 Lin, Z.; Liu, S.; Mao, W.; Tian, H.; Wang, N.; Zhang, N.; Tian, F.; Han, L.; Feng, X.; Mai, Y. Tunable Self-Assembly of Diblock Copolymers into Colloidal Particles with Triply Periodic Minimal Surfaces. Angew. Chem. Int. Ed. 2017, 56, 7135–7140.
- 6 Lyu, X.; Xiao, A.; Zhang, W.; Hou, P.; Gu, K.; Tang, Z.; Pan, H.; Wu, F.; Shen, Z.; Fan, X.-H. Head–Tail Asymmetry as the Determining Factor in the Formation of Polymer Cubosomes or Hexasomes in a Rod–Coil Amphiphilic Block Copolymer. Angew. Chem. Int. Ed. 2018, 57, 10132–10136.
- 7 Charleux, B.; Delaittre, G.; Rieger, J.; D'Agosto, F. Polymerization- Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 2012, 45, 6753–6765.
- 8 Penfold, N. J. W.; Yeow, J.; Boyer, C.; Armes, S. P. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett. 2019, 8, 1029–1054.
- 9 Pearce, S.; Perez-Mercader, J. PISA: construction of self-organized and self-assembled functional vesicular structures. Polym. Chem. 2021, 12, 29–49.
- 10 Liu, C.; Hong, C. Y.; Pan, C. Y. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem. 2020, 11, 3673–3689.
- 11
Xu, S.; Corrigan, N.; Boyer, C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym. Chem. 2021, 12, 57–68.
10.1039/D0PY00889C Google Scholar
- 12 Li, S.; Han, G.; Zhang, W. Cross-linking approaches for block copolymer nano-assemblies via RAFT-mediated polymerization-induced self-assembly. Polym. Chem. 2020, 11, 4681–4692.
- 13 Czajka, A.; Armes, S. P. In situ SAXS studies of a prototypical RAFT aqueous dispersion polymerization formulation: monitoring the evolution in copolymer morphology during polymerization-induced self-assembly. Chem. Sci. 2020, 11, 11443–11454.
- 14 Du, Y.; Jia, S.; Chen, Y.; Zhang, L.; Tan, J. Type I Photoinitiator-Functionalized Block Copolymer Nanoparticles Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly. ACS Macro Lett. 2021, 10, 297–306.
- 15 György, C.; Derry, M. J.; Cornel, E. J.; Armes, S. P. Synthesis of Highly Transparent Diblock Copolymer Vesicles via RAFT Dispersion Polymerization of 2,2,2-Trifluoroethyl Methacrylate in n-Alkanes. Macromolecules 2021, 54, 1159–1169.
- 16 Cornel Erik, J.; Jiang, J.; Chen, S.; Du, J. Principles and Characteristics of Polymerization-Induced Self-Assembly with Various Polymerization Techniques. CCS Chem. 2020, 2, 2104–2125.
- 17 Han, S.; Gu, Y.; Ma, M.; Chen, M. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles. Chem. Sci. 2020, 11, 10431–10436.
- 18 Guan, S.; Chen, A. Influence of Spacer Lengths on the Morphology of Biphenyl-Containing Liquid Crystalline Block Copolymer Nanoparticles via Polymerization-Induced Self-Assembly. Macromolecules 2020, 53, 6235–6245.
- 19 Guan, S.; Chen, A. One-Pot Synthesis of Cross-linked Block Copolymer Nanowires via Polymerization-Induced Hierarchical Self-Assembly and Photodimerization. ACS Macro Lett. 2020, 9, 14–19.
- 20 Zheng, J. w.; Wang, X.; An, Z. s. Synthesis of Oxidation Responsive Vesicles with Different Block Sequences via RAFT Polymerization- induced Self-assembly. Acta Polym. Sin. 2019, 50, 1167–1176.
- 21 Man, S. K.; Wang, X.; Zheng, J. W.; An, Z. S. Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. Chin. J. Polym. Sci. 2020, 38, 9–16.
- 22 Wang, X.; An, Z. New Insights into RAFT Dispersion Polymerization- Induced Self-Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces. Macromol. Rapid Commun. 2019, 40, 1800325.
- 23 Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol. Rapid Commun. 2019, 40, 1800279.
- 24 Varlas, S.; Lawrenson, S.; Arkinstall, L.; O'Reilly, R.; Foster, J. Self-Assembled Nanostructures from Amphiphilic Block Copolymers Prepared via Ring-Opening Metathesis Polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278.
- 25 Li, D.; Huo, M.; Liu, L.; Zeng, M.; Chen, X.; Wang, X.; Yuan, J. Overcoming Kinetic Trapping for Morphology Evolution during Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019, 40, 1900202.
- 26 Li, X.; Tan, J.; Xu, Q.; He, J.; Zhang, L. Photoinitiated Seeded RAFT Dispersion Polymerization: A Facile Method for the Preparation of Epoxy-Functionalized Triblock Copolymer Nano-Objects. Macromol. Rapid Commun. 2018, 39, 1800473.
- 27 Li, G.; Xu, N.; Yu, Q.; Lu, X.; Chen, H.; Cai, Y. Acceleration and Selective Monomer Addition during Aqueous RAFT Copolymerization of Ionic Monomers at 25 °C. Macromol. Rapid Commun. 2014, 35, 1430–1435.
- 28 Ding, Y.; Cai, M.; Cui, Z.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Synthesis of Low-Dimensional Polyion Complex Nanomaterials via Polymerization-Induced Electrostatic Self-Assembly. Angew. Chem. Int. Ed. 2018, 57, 1053–1056.
- 29 Tran, T. N.; Piogé, S.; Fontaine, L.; Pascual, S. Hydrogen-Bonding UCST-Thermosensitive Nanogels by Direct Photo-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion. Macromol. Rapid Commun. 2020, 41, 2000203.
- 30 Wang, J.; Wu, Z.; Wang, G.; Matyjaszewski, K. In Situ Crosslinking of Nanoparticles in Polymerization-Induced Self-Assembly via ARGET ATRP of Glycidyl Methacrylate. Macromol. Rapid Commun. 2019, 40, 1800332.
- 31 Yeow, J.; Xu, J.; Boyer, C. Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Lett. 2015, 4, 984–990.
- 32 Shahrokhinia, A.; Scanga, R. A.; Biswas, P.; Reuther, J. F. PhotoATRP- Induced Self-Assembly (PhotoATR-PISA) Enables Simplified Synthesis of Responsive Polymer Nanoparticles in One-Pot. Macromolecules 2021, 54, 1441–1451.
- 33 Czajka, A.; Armes, S. P. Time-Resolved Small-Angle X-ray Scattering Studies during Aqueous Emulsion Polymerization. J. Am. Chem. Soc. 2021, 143, 1474–1484.
- 34
Lv, F.; An, Z.; Wu, P. Efficient Access to Inverse Bicontinuous Mesophases via Polymerization-Induced Cooperative Assembly. CCS Chem. 2020, 2, 2211–2222.
10.31635/ccschem.020.202000407 Google Scholar
- 35 Varlas, S.; Keogh, R.; Xie, Y.; Horswell, S. L.; Foster, J. C.; O'Reilly, R. K. Polymerization-Induced Polymersome Fusion. J. Am. Chem. Soc. 2019, 141, 20234–20248.
- 36 Lv, F.; An, Z.; Wu, P. What Determines the Formation of Block Copolymer Nanotubes? Macromolecules 2020, 53, 367–373.
- 37 Ding, Z.; Ding, M.; Gao, C.; Boyer, C.; Zhang, W. In Situ Synthesis of Coil–Coil Diblock Copolymer Nanotubes and Tubular Ag/Polymer Nanocomposites by RAFT Dispersion Polymerization in Poly(ethylene glycol). Macromolecules 2017, 50, 7593–7602.
- 38 Xu, Q.; Huang, T.; Li, S.; Li, K.; Li, C.; Liu, Y.; Wang, Y.; Yu, C.; Zhou, Y. Emulsion-Assisted Polymerization-Induced Hierarchical Self-Assembly of Giant Sea Urchin-like Aggregates on a Large Scale. Angew. Chem. Int. Ed. 2018, 57, 8043–8047.
- 39 Huang, J.; Guo, Y.; Gu, S.; Han, G.; Duan, W.; Gao, C.; Zhang, W. Multicompartment block copolymer nanoparticles: recent advances and future perspectives. Polym. Chem. 2019, 10, 3426–3435.
- 40 Cao, L.; Zhao, Q.; Liu, Q.; Ma, L.; Li, C.; Wang, X.; Cai, Y. Electrostatic Manipulation of Triblock Terpolymer Nanofilm Compartmentalization during Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules 2020, 53, 2220–2227.
- 41 Jimaja, S.; Varlas, S.; Xie, Y.; Foster, J. C.; Taton, D.; Dove, A. P.; O'Reilly, R. K. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Lett. 2020, 9, 226–232.
- 42 Fan, B.; Wan, J.; Zhai, J.; Chen, X.; Thang, S. H. Triggered Degradable Colloidal Particles with Ordered Inverse Bicontinuous Cubic and Hexagonal Mesophases. ACS Nano 2021, 15, 4688–4698.
- 43 Zhang, W.-J.; Hong, C.-Y.; Pan, C.-Y. Formation of Hexagonally Packed Hollow Hoops and Morphology Transition in RAFT Ethanol Dispersion Polymerization. Macromol. Rapid Commun. 2015, 36, 1428–1436.
- 44 Lv, F.; An, Z.; Wu, P. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397.
- 45 Yang, P.; Ning, Y.; Neal, T. J.; Jones, E. R.; Parker, B. R.; Armes, S. P. Block copolymer microparticles comprising inverse bicontinuous phases prepared via polymerization-induced self-assembly. Chem. Sci. 2019, 10, 4200–4208.
- 46 Luo, X.; An, Z. Polymerization-Induced Self-Assembly for the Synthesis of Poly(N,N-dimethylacrylamide)-b-Poly(4-tert-butoxystyrene) Particles with Inverse Bicontinuous Phases. Macromol. Rapid Commun. 2020, 41, 2000209.
- 47 Ten Brummelhuis, N.; Weck, M. Orthogonal Multifunctionalization of Random and Alternating Copolymers. ACS Macro Lett. 2012, 1, 1216–1218.