Ammonium Ion and Structural Water Co-Assisted Zn2+ Intercalation/De-Intercalation in NH4V4O10∙0.28H2O†
Ting Zhu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
‡These authors contributed equally to this work.
Search for more papers by this authorBo Mai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
‡These authors contributed equally to this work.
Search for more papers by this authorPing Hu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, Guangdong, 528200 China
Search for more papers by this authorZiang Liu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorCongcong Cai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorXuanpeng Wang
Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, Guangdong, 528200 China
Search for more papers by this authorCorresponding Author
Liang Zhou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, Guangdong, 528200 China
E-mail: [email protected]Search for more papers by this authorTing Zhu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
‡These authors contributed equally to this work.
Search for more papers by this authorBo Mai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
‡These authors contributed equally to this work.
Search for more papers by this authorPing Hu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, Guangdong, 528200 China
Search for more papers by this authorZiang Liu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorCongcong Cai
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorXuanpeng Wang
Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, Guangdong, 528200 China
Search for more papers by this authorCorresponding Author
Liang Zhou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, Guangdong, 528200 China
E-mail: [email protected]Search for more papers by this author† Dedicated to the Special Issue of Nanostructured Materials for Electrochemical Energy Conversion and Storage.
Main observation and conclusion
The cathode material plays a crucial role in the performances of aqueous zinc-ion batteries (ZIBs). Herein, we report an ammonium vanadate (NH4V4O10∙0.28H2O, NHVO) aqueous ZIB cathode material. The obtained NHVO microflowers manifest high discharge capacity (410 mA·h∙g–1 at 0.2 A∙g–1), long-term durability (76% capacity retention over 500 cycles), as well as ideal rate performance (112 mA·h∙g–1 at 10 A∙g–1). The impressive electrochemical performance can be attributed to the ammonium ion and structural water co-assisted Zn2+ intercalation/de-intercalation, which has been demonstrated by various ex-situ and in-situ characterizations. The superior electrochemical performance makes the NHVO microflower an ideal candidate cathode material for aqueous ZIBs.
Supporting Information
Filename | Description |
---|---|
cjoc202100004-sup-0001-Supinfo.pdfPDF document, 2.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-K.; Kim, J. Na2V6O16·3H2O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. Nano Lett. 2018, 18, 2402–2410.
- 2 Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.
- 3 Lu, K.; Song, B.; Zhang, Y.; Ma, H.; Zhang, J. Encapsulation of Zinc Hexacyanoferrate Nanocubes with Manganese Oxide Nanosheets for High-Performance Rechargeable Zinc Ion Batteries. J. Mater. Chem. A 2017, 5, 23628–23633.
- 4 Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling. Chem. Mater. 2018, 30, 3874–3881.
- 5 Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System. Chem. Mater. 2015, 27, 3609–3620.
- 6 Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.
- 7 Wu, X.; Li, Y.; Li, C.; He, Z.; Xiang, Y.; Xiong, L.; Chen, D.; Yu, Y.; Sun, K.; He, Z.;Chen, P. The Electrochemical Performance Improvement of LiMn2O4/Zn Based on Zinc Foil as the Current Collector and Thiourea as an Electrolyte Additive. J. Power Sources 2015, 300, 453–459.
- 8 Bai, S.; Song, J.; Wen, Y.; Cheng, J.; Cao, G.; Yang, Y.; Li, D. Effects of Zinc and Manganese Ions in Aqueous Electrolytes on Structure and Electrochemical Performance of Na0.44MnO2 Cathode Material. RSC Adv. 2016, 6, 40793–40798.
- 9 Zhu, C.; Fang, G.; Zhou, J.; Guo, J.; Wang, Z.; Wang, C.; Li, J.; Tang, Y.; Liang, S. Binder-Free Stainless Steel@Mn3O4 Nanoflower Composite: A High-Activity Aqueous Zinc Ion Battery Cathode with High-Capacity and Long-Cycle-Life. J. Mater. Chem. A 2018, 6, 9677–9683.
- 10 Jiang, B.; Xu, C.; Wu, C.; Dong, L.; Li, J.; Kang, F. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochim. Acta 2017, 229, 422–428.
- 11 Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V2O5 as a Low-Cost Rechargeable Aqueous Zinc Ion Battery Cathode. Chem. Commun. 2018, 54, 4457–4460.
- 12 Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2017, 30, 1703725.
- 13 Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Lee, K.-S.; Sun, Y.-K.; Kim, J. Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chem. Mater. 2017, 29, 1684–1694.
- 14 He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Adv. Energy Mater. 2017, 7, 1601920.
- 15 Zhang, Y.; Chen, A.; Sun, J. Promise and Challenge of Vanadium- Based Cathodes for Aqueous Zinc-Ion Batteries. J. Energy Chem. 2021, 54, 655–667.
- 16 Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy 2016, 1, 16119.
- 17 Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-k.; Kim, J. Aqueous Rechargeable Zn-Ion Batteries: An Imperishable and High-Energy Zn2V2O7 Nanowire Cathode through Intercalation Regulation. J. Mater. Chem. A 2018, 6, 3850–3856.
- 18 Deng, S.; Yuan, Z.; Tie, Z.; Wang, C.; Song, L.; Niu, Z. Electrochemically Induced Metal-Organic-Framework-Derived Amorphous V2O5 for Superior Rate Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 22002–22006.
- 19 Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5, 1400930.
- 20 Liu, Z.; Bertram, P.; Endres, F. Bio-Degradable Zinc-Ion Battery Based on a Prussian Blue Analogue Cathode and a Bio-Ionic Liquid-Based Electrolyte. J. Solid State Electr. 2017, 21, 2021–2027.
- 21 Gupta, T.; Kim, A.; Phadke, S.; Biswas, S.; Luong, T.; Hertzberg, B. J.; Chamoun, M.; Evans-Lutterodt, K.; Steingart, D. A. Improving the Cycle Life of a High-Rate, High-Potential Aqueous Dual-Ion Battery Using Hyper-Dendritic Zinc and Copper Hexacyanoferrate. J. Power Sources 2016, 305, 22–29.
- 22 Ko, J. S.; Paul, P. P.; Wan, G.; Seitzman, N.; DeBlock, R. H.; Dunn, B. S.; Toney, M. F.; Weker, J. N. NASICON Na3V2(PO4)3 Enables Quasi-Two- Stage Na+ and Zn2+ Intercalation for Multivalent Zinc Batteries. Chem. Mater. 2020, 32, 3028–3035.
- 23 Shi, H. Y.; Bin, S.; Qin, Z.; Li, C.; Guo, D.; Liu, X. X.; Sun, X. Inhibiting VOPO4·xH2O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angew. Chem. Int. Ed. 2019, 131, 16057–16061.
- 24 Li, W.; Wang, K.; Cheng, S.; Jiang, K. A Long-Life Aqueous Zn-Ion Battery Based On Na3V2(PO4)2F3 Cathode. Energy Storage Mater. 2018, 15, 14–21.
- 25 Zhang, H.; Fang, Y.; Yang, F.; Liu, X. Q.; Lu, X. Aromatic Organic Molecular Crystal with Enhanced π-π Stacking Interaction for Ultrafast Zn-Ion Storage. Energy Environ. Sci. 2020, 8, 2515–2523.
- 26 Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y. High-Capacity Aqueous Zinc Batteries Using Sustainable Quinone Electrodes. Sci. Adv. 2018, 4, 1761.
- 27 Boya, T.; Guozhao, F.; Jiang, Z.; Liangbing, W.; Yongpeng, L.; Chao, W.; Tianquan, L.; Yan, T.; Shuquan, L. Potassium Vanadates with Stable Structure and Fast Ion Diffusion Channel as Cathode for Rechargeable Aqueous Zinc-Ion Batteries. Nano Energy 2018, 51, 579–587.
- 28 Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Adv. Mater. 2017, 30, 1705580.
- 29 Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.; Qiu, M.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F. Rechargeable Aqueous Zn-V2O5 Battery with High Energy Density and Long Cycle Life. ACS Energy Lett. 2018, 3, 1366–1372.
- 30 Hu, P.; Yan, M.; Zhu, T.; Wang, X.; Wei, X.; Li, J.; Zhou, L.; Li, Z.; Chen, L.; Mai, L. Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. ACS Appl. Mater. Inter. 2017, 9, 42717–42722.
- 31 Xia, C.; Guo, J.; Li, P.; Zhang, X.; Alshareef, H. N. Highly Stable Aqueous Zinc-Ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode. Angew. Chem. Int. Ed. 2018, 57, 3837–3837.
- 32 He, P.; Zhang, G.; Liao, X.; Yan, M.; Mai, L. Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702463.
- 33 Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564.
- 34 Sarkar, A.; Sarkar, S.; Mitra, S. Exceptionally High Sodium-Ion Battery Cathode Capacity Based On Doped Ammonium Vanadium Oxide and a Full Cell SIB Prototype Study. J. Mater. Chem. A 2017, 5, 24929–24941.
- 35 Fei, H.; Li, H.; Li, Z.; Feng, W.; Liu, X.; Wei, M. Facile Synthesis of Graphite Nitrate-Like Ammonium Vanadium Bronzes and Their Graphene Composites for Sodium-Ion Battery Cathodes. Dalton Trans. 2014, 43, 16522–16527.
- 36 Zhao, Y.; Han, C.; Yang, J.; Su, J.; Xu, X.; Li, S.; Xu, L.; Fang, R.; Jiang, H.; Zou, X.; Song, B.; Mai, L.; Zhang, Q. Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Lett. 2015, 15, 2180–2185.
- 37 Wan, F.; Huang, S.; Cao, H.; Niu, Z. Freestanding Potassium Vanadate/Carbon Nanotube Films for Ultralong-Life Aqueous Zinc-Ion Batteries. ACS Nano 2020, 14, 6752–6760.
- 38 Tang, B.; Zhou, J.; Fang, G.; Liu, F.; Zhu, C.; Wang, C.; Pan, A.; Liang, S. Engineering the Interplanar Spacing of Ammonium Vanadates as a High-Performance Aqueous Zinc-Ion Battery Cathode. J. Mater. Chem. A 2019, 7, 940–945.
- 39 Li, Q.; Rui, X.; Chen, D.; Feng, Y.; Xiao, N.; Gan, L.; Zhang, Q.; Yu, Y.; Huang, S. A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. Nano-Micro Lett. 2020, 12, 67.
- 40 Chandrappa, G. T.; Chithaiah, P.; Ashoka, S.; Livage, J. Morphological Evolution of (NH4)0.5V2O5·mH2O Fibers into Belts, Triangles, and Rings. Inorg. Chem. 2011, 50, 7421–7428.
- 41 Zakharova, G. S.; TäSchner, C.; Kolb, T.; Jähne, C.; Leonhardt, A.; Büchner, B.; Klingeler, R. Morphology Controlled NH4V3O8 Microcrystals by Hydrothermal Synthesis. Dalton Trans. 2013, 42, 4897–4902.
- 42 Baddourhadjean, R.; Pereiraramos, J. P.; Navone, C.; Smirnov, M. Raman Microspectrometry Study of Electrochemical Lithium Intercalation into Sputtered Crystalline V2O5 Thin Films. Electrochim. Acta 2008, 54, 6674–6679.
- 43 Fei, H.; Liu, X.; Li, H.; Wei, M. Enhanced Electrochemical Performance of Ammonium Vanadium Bronze through Sodium Intercalation and Optimization of Electrolyte. J. Colloid Interface Sci. 2014, 418, 273–276.
- 44 Twu, J.; Shih, C. F.; Guo, T. H.; Chen, K. H. Raman Spectroscopic Studies of the Thermal Decomposition Mechanism of Ammonium Metavanadate. J. Mater. Chem. 1997, 7, 2273–2277.
- 45 Wang, Y.; Zhang, L.; Bi, J.; Yang, H.; Zhao, Z.; Mu, D.; Wu, B. Lithiated VO2(M)@Carbon Fibers Hybrid Host for Improving the Cycling Stability of Sulfur Cathode in Lithium-Sulfur Batteries. Chin. J. Chem. 2020, 38, 1703–1708.