How Machine Learning Accelerates the Development of Quantum Dots?†
Jia Peng
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081 Beijing, China
Search for more papers by this authorRamzan Muhammad
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081 Beijing, China
Search for more papers by this authorShu-Liang Wang
School of Computer Science & Technology, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Hai-Zheng Zhong
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081 Beijing, China
E-mail: [email protected]Search for more papers by this authorJia Peng
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081 Beijing, China
Search for more papers by this authorRamzan Muhammad
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081 Beijing, China
Search for more papers by this authorShu-Liang Wang
School of Computer Science & Technology, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Hai-Zheng Zhong
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081 Beijing, China
E-mail: [email protected]Search for more papers by this author† Dedicated to the 80th Anniversary of Beijing Institute of Technology.
Abstract
With the rapid developments in the field of information technology, the material research society is looking for an alternate scientific route to the traditional methods of trial and error in material research and process development. Machine learning emerges as a new research paradigm to accelerate the application-oriented material discovery. Quantum dots are expanded as functional nanomaterials to enhance cutting-edge photonic technology. However, they suffer from uncertainty in industrial fabrication and application. Here, we discuss how machine learning accelerates the development of quantum dots. The basic principles and operation procedures of machine learning are described with a few representative examples of quantum dots. We emphasize how machine learning contributes to the optimization of synthesis and the analysis of material characterizations. To conclude, we give a short perspective discussing the problems of combining machine learning and quantum dots.
References
- 1 Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555.
- 2 Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002.
- 3 2011 MGI White Paper. https://www.mgi.gov/.
- 4 White, A. The Materials Genome Initiative: One year on. MRS Bull. 2012, 37, 715–716.
- 5 de Pablo, J. J.; Jones, B.; Lind, C.; Ozolins, V.; Ramirez, A. P. The Materials Genome Initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid St. M. 2014, 18, 99–117.
- 6 Green, M. L.; Choi, C. L.; Hattrick-Simpers, J. R.; Joshi, A. M.; Takeuchi, I.; Barron, S. C.; Campo, E.; Chiang, T.; Empedocles, S.; Gregoire, J. M.; Kusne, A. G.; Martin, J.; Mehta, A.; Persson, K.; Trautt, Z.; Van Duren, J.; Zakutayev, A. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. APL Mater. 2017, 4, 011105.
- 7 Green, M. L.; Takeuchi, I.; Hattrick-Simpers, J. R. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 2013, 113, 231101.
- 8 Curtarolo, S.; Setyawan, W.; Wang, S. D.; Xue, J. K.; Yang, K. S.; Taylor, R. H.; Nelson, L. J.; Hart, G. L. W.; Sanvito, S.; Buongiorno-Nardelli, M.; Mingo, N.; Levy, O. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 2012, 58, 227–235.
- 9 Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: recent applications and prospects. NPJ Comput. Mater. 2017, 3, 54.
- 10 Jordan, M. I.; Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.
- 11 Mitchell, T. M. Machine Learning, McGraw-Hill, New York, 1997.
- 12 Hu, Z. L.; Tang, J. S.; Wang, Z. M.; Zhang, K.; Zhang, L.; Sun, Q. L. Deep learning for image-based cancer detection and diagnosis – A survey. Pattern Recognit. 2018, 83, 134–149.
- 13 Cambria, E.; White, B. Jumping NLP Curves: A Review of Natural Language Processing Research. IEEE Comput. Intell. Mag. 2014, 9, 48–57.
- 14 Stilgoe, J. Machine learning, social learning and the governance of self-driving cars. Soc. Stud. Sci. 2018, 48, 25–56.
- 15 Tsai, C. W.; Lai, C. F.; Chiang, M. C.; Yang, L. T. Data Mining for Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 77–97.
- 16 Tshitoyan, V.; Dagdelen, J.; Weston, L.; Dunn, A.; Rong, Z. Q.; Kononova, O.; Persson, K. A.; Ceder, G.; Jain, A. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 2019, 571, 95.
- 17 Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science. APL Mater. 2016, 4, 053208.
- 18 Im, J.; Lee, S.; Ko, T. W.; Kim, H. W.; Hyon, Y.; Chang, H. Identifying Pb-free perovskites for solar cells by machine learning. NPJ Comput. Mater. 2019, 5, 37.
- 19 Jin, H.; Zhang, H.; Li, J.; Wang, T.; Wan, L.; Guo, H.; Wei, Y. Discovery of Novel Two-Dimensional Photovoltaic Materials Accelerated by Machine Learning. J. Phys. Chem. Lett. 2020, 11, 3075–3081.
- 20 Pradhan, D. K.; Kumari, S.; Strelcov, E.; Pradhan, D. K.; Katiyar, R. S.; Kalinin, S. V.; Laanait, N.; Vasudevan, R. K. Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence. NPJ Comput. Mater. 2018, 4, 23.
- 21 Timoshenko, J.; Lu, D.; Lin, Y.; Frenkel, A. I. Supervised Machine- Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. J. Phys. Chem. Lett. 2017, 8, 5091–5098.
- 22 Takahashi, K.; Takahashi, L. Creating Machine Learning-Driven Material Recipes Based on Crystal Structure. J. Phys. Chem. Lett. 2019, 10, 283–288.
- 23 Zhou, Q.; Lu, S.; Wu, Y.; Wang, J. Property-Oriented Material Design Based on a Data-Driven Machine Learning Technique. J. Phys. Chem. Lett. 2020, 11, 3920–3927.
- 24 Sahu, H.; Ma, H. Unraveling Correlations between Molecular Properties and Device Parameters of Organic Solar Cells Using Machine Learning. J. Phys. Chem. Lett. 2019, 10, 7277–7284.
- 25 Li, D.; Li, X.; Zhang, Y.; Sun, L.; Yuan, S. Four Methods to Estimate Minimum Miscibility Pressure of CO2-Oil Based on Machine Learning. Chin. J. Chem. 2019, 37, 1271–1278.
- 26 Owens, J.; Brus, L. Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots. J. Am. Chem. Soc. 2017, 139, 10939–10943.
- 27 Pietryga, J. M.; Park, Y. S.; Lim, J. H.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem. Rev. 2016, 116, 10513–10622.
- 28 Pu, C. D.; Qin, H. Y.; Gao, Y.; Zhou, J. H.; Wang, P.; Peng, X. G. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. J. Am. Chem. Soc. 2017, 139, 3302–3311.
- 29 Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.
- 30 de Mantaras, R. L.; Armengol, E. Machine Learning from examples: Inductive and Lazy methods. Data Knowl. Eng. 1998, 25, 99–123.
- 31 Wei, J.; Chu, X.; Sun, X. Y.; Xu, K.; Deng, H. X.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358.
- 32 Wang, M.; Wang, T.; Cai, P. Q.; Chen, X. D. Nanomaterials Discovery and Design through Machine Learning. Small Methods 2019, 3, 1900025.
- 33 LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
- 34 Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P. A.; Vincent, P.; Bengio, S. Why Does Unsupervised Pre-training Help Deep Learning? J. Mach. Learn. Res. 2010, 11, 625–660.
- 35 Zhou, Z. H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53.
- 36 Miyato, T.; Maeda, S. I.; Koyama, M.; Ishii, S. Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning. IEEE T. Pattern. Anal. 2019, 41, 1979–1993.
- 37 Langkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 2014, 42, 11–24.
- 38 Lu, W. C.; Ji, X. B.; Li, M. J.; Liu, L.; Yue, B. H.; Zhang, L. M. Using support vector machine for materials design. Adv. Manuf. 2013, 1, 151–159.
- 39 Viswanatha, R.; Battaglia, D. M.; Curtis, M. E.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Shape Control of Doped Semiconductor Nanocrystals (d-Dots). Nano Res. 2008, 1, 138–144.
- 40 Xue, Y.; Liu, S.-C.; Liu, X.; Yang, Y.; Zhang, Y.; Xue, D.-J.; Hu, J.-S. Room-Temperature Solution-Processed PbS Quantum Dot Solar Cells. Chin. J. Chem. 2020, 38, 356–360.
- 41 Han, D. B.; Imran, M.; Zhang, M. J.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J. L.; Wang, M. S.; Ali, S.; Li, X. G.; Yu, G.; Han, J. B.; Wang, L. X.; Zou, B. S.; Zhong, H. Z. Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr(3) Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. ACS Nano 2018, 12, 8808–8816.
- 42 Singulani, A. P.; Vilela Neto, O. P.; Pacheco, M. C. A.; Vellasco, M. B. R.; Pires, M. R.; Souza, P. L. Computational intelligence applied to the growth of quantum dots. J. Cryst. Growth 2008, 310, 5063–5065.
- 43 Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M. J.; Ouellette, O.; Todorovic, P.; Sagar, L. K.; Sargent, E. H. Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. ACS Nano 2019, 13, 11122–11128.
- 44 Fu, M.; Mrziglod, T.; Luan, W.; Tu, S.-T.; Mleczko, L. Neural network modeling and simulation of the synthesis of CuInS2/ZnS quantum dots. Eng. Rep. 2020, 2, e12122.
- 45 Guo, Y. S.; Yaffe, O.; Hull, T. D.; Owen, J. S.; Reichman, D. R.; Brus, L. E. Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites. Nat. Commun. 2019, 10, 1175.
- 46 Dager, A.; Uchida, T.; Maekawa, T.; Tachibana, M. Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning. Sci. Rep. 2019, 9, 14004.
- 47 Liu, S. L.; Wang, Z. G.; Xie, H. Y.; Liu, A. A.; Lamb, D. C.; Pang, D. W. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem. Rev. 2020, 120, 1936–1979.
- 48 Qu, Y.; Li, W.; Zhou, Y. L.; Liu, X. F.; Zhang, L. L.; Wang, L. M.; Li, Y. F.; Iida, A.; Tang, Z. Y.; Zhao, Y. L.; Chai, Z. F.; Chen, C. Y. Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing Caenorhabditis elegans as a Model Organism. Nano Lett. 2011, 11, 3174–3183.
- 49 Li, Y. Y.; Zhou, Y. L.; Wang, H. Y.; Perrett, S.; Zhao, Y. L.; Tang, Z. Y.; Nie, G. J. Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angew. Chem. Int. Ed. 2011, 50, 5860–5864.
- 50 Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X. L.; Chen, C. Y.; Zhao, Y. L. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 2011, 7, 1322–1337.
- 51 Zhao, F.; Meng, H.; Yan, L.; Wang, B.; Zhao, Y. L. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci. Bull. 2015, 60, 3–20.
- 52 Oh, E.; Liu, R.; Nel, A.; Gemill, K. B.; Bilal, M.; Cohen, Y.; Medintz, I. L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 2016, 11, 479.
- 53 Li, J. G.; Tu, Y. X.; Liu, R. L.; Lu, Y. H.; Zhu, X. Toward "On-Demand" Materials Synthesis and Scientific Discovery through Intelligent Robots. Adv. Sci. 2020, 7, 1901957.
- 54 Epps, R. W.; Bowen, M. S.; Volk, A. A.; Abdel-Latif, K.; Han, S.; Reyes, K. G.; Amassian, A.; Abolhasani, M. Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot. Adv. Mater. 2020, 32, 2001626.
- 55 Manzo, C.; Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601.
- 56 Lingnau, B.; Luedge, K.; Chow, W. W.; Schoell, E. Failure of the alpha factor in describing dynamical instabilities and chaos in quantum–dot lasers. Phys. Rev. E 2012, 86, 065201.
- 57 Seshadri, R.; Sparks, T. D. Perspective: Interactive material property databases through aggregation of literature data. APL Mater. 2016, 4, 053206.
- 58 Kim, E.; Huang, K.; Saunders, A.; McCallum, A.; Ceder, G.; Olivetti, E. Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning. Chem. Mater. 2017, 29, 9436–9444.
- 59 Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73.
- 60 Jain, A.; Persson, K. A.; Ceder, G. Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases. APL Mater. 2016, 4, 053102.
- 61 Zhang, Y.; Ling, C. A strategy to apply machine learning to small datasets in materials science. NPJ Comput. Mater. 2018, 4, 25.
- 62 Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H. S.; Hospedales, T. M. In Learning to Compare: Relation Network for Few-Shot Learning, the31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018, pp. 1199–1208.
- 63 Sun, Q.; Liu, Y.; Chua, T.-S.; Schiele, B.; Soc, I. C. In Meta-Transfer Learning for Few-Shot Learning, the 32nd 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, America, 2019, pp. 403–412.
- 64 Kailkhura, B.; Gallagher, B.; Kim, S.; Hiszpanski, A.; Han, T. Y. J. Reliable and explainable machine-learning methods for accelerated material discovery. NPJ Comput. Mater. 2019, 5, 108.
- 65 Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301.
- 66 Lee, H.; Yune, S.; Mansouri, M.; Kim, M.; Tajmir, S. H.; Guerrieri, C. E.; Ebert, S. A.; Pomerantz, S. R.; Romero, J. M.; Kamalian, S.; Gonzalez, R. G.; Lev, M. H.; Do, S. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat. Biomed. Eng. 2019, 3, 173.
- 67 Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono, N. T. P.; Ramasamy, S.; DeCost, B. L.; Tian, S. I. P.; Romano, G.; Kusne, A. G.; Buonassisi, T. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. NPJ Comput. Mater. 2019, 5, 60.
- 68 Iwasaki, Y.; Sawada, R.; Stanev, V.; Ishida, M.; Kirihara, A.; Omori, Y.; Someya, H.; Takeuchi, I.; Saitoh, E.; Yorozu, S. Identification of advanced spin-driven thermoelectric materials via interpretable machine learning. NPJ Comput. Mater. 2019, 5, 103.
- 69 Correa-Baena, J. P.; Hippalgaonkar, K.; van Duren, J.; Jaffer, S.; Chandrasekhar, V. R.; Stevanovic, V.; Wadia, C.; Guha, S.; Buonassisi, T. Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing. Joule 2018, 2, 1410–1420.
- 70 deMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402.
- 71 Epps, R. W.; Felton, K. C.; Coley, C. W.; Abolhasani, M. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing. Lab Chip 2017, 17, 4040–4047.
- 72 Elvira, K. S.; Solvas, X. C. i.; Wootton, R. C. R.; deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915.