Initial Electrode Kinetics of Anion Intercalation and De-intercalation in Nonaqueous Al-Graphite Batteries†
Dan Han
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Mao-Sheng Cao
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorNa Li
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDong-Mei She
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Wei-Li Song
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorHaosen Chen
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Shuqiang Jiao
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorDaining Fang
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDan Han
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Mao-Sheng Cao
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorNa Li
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDong-Mei She
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Wei-Li Song
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorHaosen Chen
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Shuqiang Jiao
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorDaining Fang
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081 China
Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDedicated to the 80th Anniversary of Beijing Institute of Technology.
Main observation and conclusion
Graphitic materials with intercalated sites are considered as the mostly used positive electrode materials in nonaqueous Al batteries. Unlike the small-size cations, the intercalation/de-intercalation of large-size anions into/out of graphite would induce large volume expansion and micro-structure reconfiguration, leading to unexpected coulombic efficiency in the full cells (<95% within initial several cycles). For understanding the irreversible processes induced by anion intercalation/de-intercalation (AlCl4–), here the kinetics of first two cycles for the Al-graphite batteries have been systematically studied. To study kinetics behaviors at representative states, a combined method upon galvanostatic intermittent titration technique and electrochemical impedance spectroscopy has been carried out. The achieved diffusion coefficients of the positive electrodes assembled with different graphite sizes suggest that size effect also plays a critical role in determining the electrochemical kinetics in the mass transport in both electrolyte and graphitic layers as well as in interface reaction. The morphologies and micro-structures of the post-cycled graphite electrodes have been also experimentally studied, which also well supports the irreversible intercalation/de-intercalation behaviors in graphite electrodes. The results offer a significant platform to well understand the essential factors in tailoring coulombic efficiency from a kinetic view, which would be helpful in promoting the graphite electrodes in Al batteries.
Supporting Information
Filename | Description |
---|---|
cjoc202000389-sup-0001-Supinfo.pdfPDF document, 573.3 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Weng, W.; Wang, S. B.; Xiao, W.; Lou, X. W. Direct Conversion of Rice Husks to Nanostructured SiC/C for CO2 Photoreduction. Adv. Mater. 2020, 32, 2001560.
- 2 Wang, J.; Wang, B.; Lu, B. G. Nature of Novel 2D van der Waals Heterostructures for Superior Potassium Ion Batteries. Adv. Energy. Mater. 2020, 10, 2000884.
- 3 Wang, W.; Jiang, B.; Xiong, W. Y.; Sun, H.; Lin, Z. S.; Hu, L. W.; Tu, J. G.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. A New Cathode Material for Super-valent Battery Based on AluminiumIon Intercalation and Deintercalation. Sci. Rep. 2013, 3, 3383.
- 4 Zeng, C.; Weng, W.; Lv, T.; Xiao, W. Low-Temperature Assembly of Ultrathin Amorphous MnO2 Nanosheets over Fe2O3 Spindles for Enhanced Lithium Storage. ACS Appl. Mater. Interfaces 2018, 10, 30470–30478.
- 5 Jiang, M.; Fu, C. P.; Yang, Q. L.; Liu, Q.; Zhang J.; Sun, B. D. Defect- engineered MnO2 Enhancing Oxygen Reduction Reaction for High Performance Al-air Batteries. Energy Storage Mater. 2019, 18, 34–42.
- 6 Tong, X. F.; Zhang, F.; Ji, B. F.; Sheng, M. H.; Tang, Y. B. Carbon- Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries. Adv. Mater. 2016, 28, 9979–9985.
- 7 Jiang, C. L.; Fang, Y.; Lang, J. H.; Tang, Y. B. Integrated Configuration Design for Ultrafast Rechargeable Dual-Ion Battery. Adv. Energy Mater. 2017, 7, 1700913.
- 8 Zhang, X. F.; Jiao, S. Q.; Tu, J. G.; Song, W. L.; Xiao, X.; Li, S. J.; Wang, M. Y.; Lei, H. P.; Tian, D. H.; Chen, H. S.; Fang, D. N. Rechargeable Ultrahigh-Capacity Tellurium-Aluminum Batteries. Energy Environ. Sci. 2019, 12, 1918–1927.
- 9 Wang, S.; Jiao, S.; Wang, J.; Chen, H. S.; Tian, D.; Lei, H.; Fang, D. N. A High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. ACS Nano 2017, 11, 467–477.
- 10 Tan, H.; Yu, Z. X.; Huang, K.; Zhong, J. X.; Lu, B. G. Large-Scale Carambola-like V2O5 Nanoflowers Arrays on Microporous Reed Carbon as Improved Electrochemical Performances Lithium-Ion Batteries Cathode. J. Energy Chem. 2020, 51, 388–395.
- 11 Zhang, E. J.; Wang, B.; Wang, J.; Ding, H. B.; Zhang, S.; Duan, H. G.; Yu, X. Z.; Lu, B. G. Rapidly Synthesizing Interconnected Carbon Nanocage by Microwave toward High-Performance Aluminum Batteries. Chem. Eng. J. 2020, 389, 124407.
- 12 Li, N.; Xu, X.; Sun, B. W.; Xie, K. Y.; Huang, W.; Yu, T. Recent Nanosheet-based Materials for Monovalent and Multivalent Ions Storage. Energy Storage Mater. 2020, 25, 382–403.
- 13 Zhou, Z. L.; Li, N.; Wang, P.; Song, W. L.; Jiao, S. Q.; Chen, H. S.; Fang, D. N. All-carbon Positive Electrodes for Stable Aluminium Batteries. J. Energy Chem. 2020, 42, 17–26.
- 14 Wang, S.; Yu, Z. J.; Tu, J. G.; Wang, J. X.; Tian, D. H.; Liu, Y. J.; Jiao, S. Q. A Novel Aluminium-ion Battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene. Adv. Energy. Mater. 2016, 6, 1600137.
- 15 Zhou, Z. L.; Li, N.; Yang, Y. Z.; Chen, H. S.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Ultra-Lightweight 3D Carbon Current Collectors: Constructing All-Carbon Electrodes for Stable and High Energy Density Dual-Ion Batteries. Adv. Energy. Mater. 2018, 8, 1801439.
- 16 Rüdorff, W.; Hofmann, U. Graphite salts. Z. Anorg. Allg. Chem. 1938, 238, 1–50.
- 17 Carlin, R. T.; Delong, C. H.; Fuller, J.; Trulove, P. C. Dual Intercalating Molten Electrolyte Batteries. J. Electrochem. Soc. 1994, 141, L73–L76.
- 18 Mohandas, K. S.; Snail, N.; Noel, M.; Rodriguez, P. Electrochemical Intercalation of Aluminium Chloride in Graphite in the Molten Sodium Chloroaluminate Medium. Carbon 2003, 41, 927–932.
- 19 Sun, H.; Wang, W.; Yu, Z. Yuan, Y.; Wang, S.; Jiao, S. A New Aluminium-Ion Battery With High Voltage, High Safety and Low Cost. Chem. Commun. 2015, 51, 11892–11895.
- 20 Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Jiang, Y.; Hwang, B. J.; Dai, H. J. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature 2015, 520, 324–328.
- 21 Yu, Z. J.; Jiao, S. Q.; Chen, X. D.; Song, W. L.; Teng, T.; Tu, J. G.; Chen, H. S.; Zhang, G. H.; Fang, D. N. Flexible Stable Solid-State Al-Ion Batteries. Adv. Funct. Mater. 2019, 29, 1806799.
- 22 Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An Industrialized Prototype of the Rechargeable Al/AlCl3-[EMIm]Cl/ Graphite Battery and Recycling of the Graphitic Cathode into Graphene. Carbon 2016, 109, 276–281.
- 23 Chen, L. L.; Li, N.; Shi, H. F.; Zhang, Y. F.; Song, W. L.; Jiao, S. Q.; Chen, H. S.; Fang, D. N. Stable Wide-Temperature and Low Volume Expansion Al Batteries: Integrating Few-Layer Graphene with Multifunctional Cobalt Boride Nanocluster as Positive Electrode. Nano Res. 2020, 13, 419–429.
- 24 Chen, Y.; Zhou, Z. L.; Li, N.; Jiao, S. Q.; Chen, H. S.; Song, W. L.; Fang, D. N. Thick Electrodes Upon Biomass-Derivative Carbon Current Collectors: High-areal Capacity Positive Electrodes for Aluminum-Ion Batteries. Electrochim. Acta 2019, 323, 134805.
- 25 Read, J. A. In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Cointercalation of Solvent. J. Phys. Chem. C 2015, 199, 8438–8446.
- 26 Gao, J. C.; Yoshio, M.; Qi, L.; Wang, H. Y. Solvation Effect on Intercalation Behaviour of Tetrafluoroborate into Graphite Electrode. J. Power Sources 2015, 278, 452–457.
- 27 Zhou, A. J.; Liu, Q.; Wang, Y.; Wang, W. H.; Yao, X.; Hu, W. T.; Zhang, L.; Yu, X. Q.; Li, J. Z.; Li, H. Al2O3 Surface Coating on LiCoO2 Through a Facile and Scalable Wet-Chemical Method towards High-Energy Cathode Materials Withstanding High Cut off Voltages. J. Mater. Chem. A 2017, 5, 24361–24370.
- 28 Xu, E. Z.; Zhang, Y.; Wang, H.; Zhu, Z. F.; Quan, J. J.; Chang, Y. J.; Li, P. C.; Yu, D. B.; Jiang, Y. Ultrafast Kinetics Net Electrode Assembled via MoSe2/MXene Heterojunction for High-Performance Sodium-Ion Batteries. Chem. Eng. J. 2020, 385, 123839.
- 29 Qu, T.; Tian, Y. W.; Zhai, Y. C. Measurement of Diffusion Coefficient of Lithium in LiFePO4 Cathode Material for Li-ion Battery by PITT and EIS. Chin. J. Nonferroud Met. 2007, 17, 1255–1259.
- 30 Tang, X.; Ma, C. R.; Orazem, M. E.; You, C.; Li, Y. Local Electrochemical Characteristics of Pure Iron under a Saline Droplet II: Local Corrosion Kinetics. Electrochim. Acta 2020, 354, 136631.
- 31 Zhao, W. X.; Ma, X. Q.; Gao, L. X.; Li, Y. D.; Wang, G. Z.; Sun, Q. Engineering Carbon-Nanochain Concatenated Hollow Sn4P3 Nanospheres Architectures as Ultrastable and High-Rate Anode Materials for Sodium Ion Batteries. Carbon 2020, 167, 736–745.
- 32 Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y.; Cui, L.; Fang, L.; Sun, S. G. Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries. Prog. Chem. 2010, 22, 1044–1057.
- 33 Nickol, A.; Schied, T.; Heubner, C.; Schneider, M.; Michaelis, A.; Bobeth, M.; Cuniberti, G. GITT Analysis of Lithium Insertion Cathodes for Determining the Lithium Diffusion Coefficient at Low Temperature: Challenges and Pitfalls. J. Electrochem. Soc. 2020, 167, 090546.
- 34 Brian, D. A.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Adv. Energy Mater. 2017, 8, 1702097.
- 35 Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRT Tools. Electrochim. Acta 2015, 184, 483–499.
- 36 Zhou, X.; Huang, J.; Pan, Z. Q.; Ouyang, M. G. Impedance Characterization of Lithium-Ion Batteries Aging under High-Temperature Cycling: Importance of Electrolyte-Phase Diffusion. J. Power Sources 2019, 426, 216–222.
- 37 Dong, X. Z.; Xu, H. Y.; Chen, H.; Wang, L. Y.; Wang, J. Q.; Fang, W. Z.; Chen, C.; Salman, M.; Xu, Z.; Gao, C. Commercial Expanded Graphite as High-Performance Cathode for LowCost Aluminum-ion Battery. Carbon 2019, 148, 134–140.
- 38 Song, W. L.; Fan, L. Z.; Cao, M. S.; Lu, M. M.; Wang, G. Y.; Wang, J.; Chen, T. T.; Li, Y.; Hou, Z. L.; Liu, J.; Sun, Y. P. Facile Fabrication of Ultrathin Graphene Papers for Effective Electromagnetic Shielding. J. Mater. Chem. C 2014, 2, 5057–5064.