Advances in Single-Atom Nanozymes Research†
Bing Jiang
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Minmin Liang
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]Search for more papers by this authorBing Jiang
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Minmin Liang
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]Search for more papers by this authorDedicated to the 80th Anniversary of Beijing Institute of Technology.
Abstract
Nanozymes with intrinsic enzyme-like properties have attracted significant interest owing to their capability to address the limitations of traditional enzymes such as fragility, high cost and difficult mass production. However, the currently reported nanozymes are generally less active than natural enzymes. In recent years, with the rapid development of nanoscience and nanotechnology, single-atom nanozymes (SAzymes) with well-defined electronic and geometric structures have shown a promise to serve as direct surrogates of traditional enzymes by mimicking the highly evolved catalytic center of natural enzymes. In this review, we will introduce the enzymatic characteristics and recent advances of SAzymes, and summarize their significant applications from in vitro detection to in vivo monitoring and therapy.
References
- 1 Liang, M. M.; Yan, X. Y. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
- 2 Richard, J. P. Enzyme and coenzyme reaction mechanisms: Editorial overview. Bioorg. Chem. 2014, 57, 169–170.
- 3 Shivcharan, P.; Ipsita, R. Converting enzymes into tools of industrial importance. Recent Pat. Biotechnol. 2018, 12, 33–56.
- 4 Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.
- 5 Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F.; Xie, N.; Tang, A. F.; Nie, G. H.; Liang, M. M.; Yan, X. Y. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
- 6 Wang, P. X.; Liu, S. L.; Hu, M. X.; Duan, D. M.; He, J. Y.; Hong, J. J.; Lv, R.; Choi, H. S.; Yan, X. Y.; Liang, M. M. Peroxidase-like nanozymes induce a novel form of cell death and inhibit tumor growth in vivo. Adv. Funct. Mater. 2020, 30, 2000647.
- 7 Gao, L.; Zhuang, J.; Nie, L. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
- 8 Pirmohamed, T.; Dowding, J. M.; Singh, S. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.
- 9 Andre, R.; Natalio, F.; Humanes, M. V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity. Adv. Funct. Mater. 2011, 21, 501–509.
- 10 Chaudhari, K. N.; Chaudhari, N. K.; Yu, J. S. Peroxidase mimic activity of hematite iron oxides (alpha-Fe2O3) with different nanostructres. Catal. Sci. Technol. 2012, 2, 119–124.
- 11 He, W. W.; Jia, H. M.; Li, X. X. Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 2012, 4, 3501–3506.
- 12 Maji, S. K.; Dutta, A. K.; Dutta, S. Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity. Appl. Catal. B-Environ. 2015, 163, 628–628.
- 13 He, W. W.; Zhou, Y. T.; Warner, W. G. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013, 34, 765–773.
- 14 Carmona, U.; Zhang, L. B.; Li, L. Tuning, inhibiting and restoring the enzyme mimetic activities of Pt-apoferritin. Chem. Commun. 2014, 50, 701–703.
- 15 Sun, A. Q.; Mu, L.; Hu, X. G. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl. Mater. Inter. 2017, 9, 12241–12252.
- 16 Rauf, S.; Nawaz, M. A. H.; Muhammad, N. Protic ionic liquids as a versatile modulator and stabilizer in regulating artificial peroxidase activity of carbon materials for glucose colorimetric sensing. J. Mol. Liq. 2017, 243, 333–340.
- 17 Zhao, J. L.; Cai, X. J.; Gao, W. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Inter. 2018, 10, 26108–26117.
- 18 Cai, S. F.; Han, Q. S.; Qi, C.; Wang, X. H.; Wang, T.; Jia, X. H.; Yang, R. MoS2-Pt3Au1 Nanocomposites with enhanced peroxidase-like activities for selective colorimetric detection of phenol. Chin. J. Chem. 2017, 35, 605–612.
- 19 Fan, K. L.; Cao, C. Q.; Pan, Y. X. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.
- 20 Qiao, B. T.; Wang, A. Q.; Yang, X. F. Single-atom catalysis of CO oxidation using Pt/FeOx. Nat. Chem. 2011, 3, 634–641.
- 21 Jiao, L.; Yan, H. Y.; Wu, Y. When nanozymes meet single-atom catalysis. Angew. Chem. 2020, 59, 2565–2576.
- 22 Xiong, N.; Zhang, G. X.; Sun, X. L.; Zeng, R. Metal-metal cooperation in dinucleating complexes involving late transition metals directed towards organic catalysis. Chin. J. Chem. 2020, 38, 185–201.
- 23 Han, J. Y.; Lu, J. M.; Wang, M.; Wang, Y. H.; Wang, F. Single atom alloy preparation and applications in heterogeneous catalysis. Chin. J. Chem. 2019, 37, 977–988.
- 24 Yang, X. F.; Wang, A. Q.; Qiao, B. T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
- 25 Huang, L.; Chen, J. X.; Gan, L. F. Single-atom nanozymes. Sci. Adv. 2019, 5, 5–15.
- 26 Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. Single-atom-enzyme as efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem. 2020, 59, 5108–5115.
- 27 Wang, Y.; Qi, K.; Yu, S. S. Revealing the intrinsic peroxidase like catalytic mechanism of heterogeneous single atom Co-MoS2. Nano-Micro Lett. 2019, 11, 102–115.
- 28 Kim, M. S.; Lee, J.; Kim, H. S. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 2020, 30, 1905410.
- 29 Niu, X. H.; Shi, Q. R.; Zhu, W. L. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495–111503.
- 30 Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase- like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.
- 31 Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W.; Wu, Y.; Zhu, C. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.
- 32 Chen, Q. M.; Li, S. Q.; Liu, Y. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuator B-Chem. 2020, 305, 127511.
- 33 Jiao, L.; Xu, W. Q.; Yan, H. Y. Fe-N-C Single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.
- 34 Ma, W. J.; Mao, J. J.; Yang, X. Y. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.
- 35 Lu, M. J.; Wang, C.; Ding, Y. Q. Fe-N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chem. Commun. 2019, 55, 14534–14537.
- 36 Qi, M. Y.; Pan, H.; Shen, H. D. Multienzyme-mimic nanogels synthesized by biocatalytic ATRP and metal coordination for bioresponsive fluorescence imaging. Angew. Chem. 2020, 59, 11748–11753.
- 37 Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D.; Lin, Y. H.; Zhu, C. Z. Oxidase-Like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.
- 38 Yan, R. J.; Sun, S.; Yang, J. Nanozyme-based bandage with single- atom catalysis for brain trauma. ACS. Nano 2019, 13, 11552–11560.
- 39
Xu, B. L.; Wang, H.; Wang, W. W. Single-atom nanozyme for wound antibacterial applications. Angew. Chem. 2019, 131, 4965–4970.
10.1002/ange.201813994 Google Scholar
- 40 Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z.; Zhao, Y. L. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.
- 41 Wu, Y.; Wu, J. B.; Jiao, L. Cascade reaction system integrating single- atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.
- 42 Radi, R. Reactions of nitric oxide with metalloproteins. Chem. Res. Toxicol. 1996, 9, 828–835.