Luminescence Regulation of Silver-Thiolate Clusters Protected by 1,2-Dithiolate-o-carborane
Li-Juan Liu
College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorThomas C. W. Mak
College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001 China
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
Search for more papers by this authorCorresponding Author
Shuang-Quan Zang
College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001 China
E-mail: [email protected]Search for more papers by this authorLi-Juan Liu
College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorThomas C. W. Mak
College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001 China
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
Search for more papers by this authorCorresponding Author
Shuang-Quan Zang
College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001 China
E-mail: [email protected]Search for more papers by this authorMain observation and conclusion
Engineering the surface of the metal clusters with the core structure maintained and tuning their luminescence in a wide range is still a challenge in the nanomaterial research. We modified six mono-pyridyl ligands with different electronic effects (conjugation effect or induction effect) on a superatomic silver cluster [Ag14(C2B10H10S2)6(CH3CN)8] (denoted as Ag14) through in situ site-specific surface engineering, and obtained the corresponding clusters [Ag14(C2B10H10S2)6(CH3CN)6(L1/L2)2] (denoted as NC-1, 2, L1/L2 = 4-acetylpyridine/ 4-carboxypyridine) and [Ag14(C2B10H10S2)6(L3/L4/L5/L6)8] (denoted as NC-3, 4, 5, 6, L3/L4/L5/L6 = 4-phenylpyridine/4-(1-naphthyl)pyridine/9-(4-pyridine)anthracene/9-(4-pyridine)pyrene). Through the modification of the Ag14 cluster, a wide-range luminescence from blue to red was realized. This work might provide a practical guide for improving the emission performance of metal clusters via surface engineering.
Supporting Information
Filename | Description |
---|---|
cjoc202000250-sup-0001-Supinfo.pdfPDF document, 1.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Guan, Z.-J.; Hu, F.; Li, J.-J.; Wen, Z.-R.; Lin, Y.-M.; Wang, Q.-M. Isomerization in Alkynyl-Protected Gold Nanoclusters. J. Am. Chem. Soc. 2020, 142, 2995–3001; (b) Liu, H.; Song, C.-Y.; Huang, R.-W.; Zhang, Y.; Xu, H.; Li, M.-J.; Zang, S.-Q.; Gao, G.-G. Acid–Base-Triggered Structural Transformation of a Polyoxometalate Core Inside a Dodecahedrane-like Silver Thiolate Shell. Angew. Chem. Int. Ed. 2016, 55, 3699–3703.
- 2(a) Hu, X.; Zheng, Y.; Zhou, J.; Fang, D.; Jiang, H.; Wang, X. Silver-Assisted Thiolate Ligand Exchange Induced Photoluminescent Boost of Gold Nanoclusters for Selective Imaging of Intracellular Glutathione. Chem. Mater. 2018, 30, 1947–1955; (b) Yu, H.; Rao, B.; Jiang, W.; Yang, S.; Zhu, M. The photoluminescent metal nanoclusters with atomic precision. Coord. Chem. Rev. 2019, 378, 595–617; (c) Ma, X.-H. A Silver Cluster-Assembled Material Showing Luminescent Mechanochromism and Thermochromism. Chin. J. Chem. 2019, 37, 1287–1288.
- 3(a) Han, Z.; Dong, X.-Y.; Luo, P.; Li, S.; Wang, Z.-Y.; Zang, S.-Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107; (b) Li, S.; Du, X.-S.; Li, B.; Wang, J.-Y.; Li, G.-P.; Gao, G.-G.; Zang, S.-Q. Atom- Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. J. Am. Chem. Soc. 2018, 140, 594–597; (c) Yan, J.; Su, H.; Yang, H.; Hu, C.; Malola, S.; Lin, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]4– Nano- clusters via Ion Pairing. J. Am. Chem. Soc. 2016, 138, 12751–12754; (d) Yang, H.; Yan, J.; Wang, Y.; Deng, G.; Su, H.; Zhao, X.; Xu, C.; Teo, B. K.; Zheng, N. From Racemic Metal Nanoparticles to Optically Pure Enantiomers in One Pot. J. Am. Chem. Soc. 2017, 139, 16113–16116.
- 4(a) Liu, H.; Hong, G.; Luo, Z.; Chen, J.; Chang, J.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L.; Mu, X.; Wang, J.; Mi, W.; Luo, J.; Xie, J.; Zhang, X. D. Atomic-Precision Gold Clusters for NIR-II Imaging. Adv. Mater. 2019, 31, e1901015; (b) Zhang, M.-M.; Dong, X.-Y.; Wang, Z.-Y.; Li, H.-Y.; Li, S.-J.; Zhao, X.; Zang, S.-Q. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angew. Chem. Int. Ed. 2020, 59, 10052–10058.
- 5(a) Li, G.; Jin, R. Atomically Precise Gold Nanoclusters as New Model Catalysts. Acc. Chem. Res. 2013, 46, 1749–1758; (b) Li, Y. L.; Wang, J.; Luo, P.; Ma, X. H.; Dong, X. Y.; Wang, Z. Y.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Cu14 Cluster with Partial Cu(0) Character: Difference in Electronic Structure from Isostructural Silver Analog. Adv. Sci. 2019, 6, 1900833; (c) Liu, L.; Song, Y.; Chong, H.; Yang, S.; Xiang, J.; Jin, S.; Kang, X.; Zhang, J.; Yu, H.; Zhu, M. Size-confined growth of atom- precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale 2016, 8, 1407–1412; (d) Zhao, S.; Jin, R.; Jin, R. Opportunities and Challenges in CO2 Reduction by Gold- and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Lett. 2018, 3, 452–462.
- 6(a) Kwak, K.; Tang, Q.; Kim, M.; Jiang, D.-e.; Lee, D. Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@Au24(SR)18 Clusters (M = Pd, Pt). J. Am. Chem. Soc. 2015, 137, 10833–10840; (b) Liao, L.; Zhou, S.; Dai, Y.; Liu, L.; Yao, C.; Fu, C.; Yang, J.; Wu, Z. Mono-Mercury Doping of Au25 and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry. J. Am. Chem. Soc. 2015, 137, 9511–9514.
- 7(a) Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457; (b) Yang, J. S.; Han, Z.; Dong, X. Y.; Luo, P.; Mo, H. L.; Zang, S. Q. Extra Silver Atom Triggers Room-Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew. Chem. Int. Ed. 2020, 59, 1–6.
- 8(a) Fan, J.; Song, Y.; Chai, J.; Yang, S.; Chen, T.; Rao, B.; Yu, H.; Zhu, M. The solely motif-doped Au36−xAgx(SPh-tBu)24 (x = 1–8) nanoclusters: X-ray crystal structure and optical properties. Nanoscale 2016, 8, 15317–15322; (b) Lei, Z.; Pei, X.-L.; Guan, Z.-J.; Wang, Q.-M. Full Protection of Intensely Luminescent Gold(I)–Silver(I) Cluster by Phosphine Ligands and Inorganic Anions. Angew. Chem. Int. Ed. 2017, 56, 7117–7120; (c) Lei, Z.; Pei, X.-L.; Jiang, Z.-G.; Wang, Q.-M. Cluster Linker Approach: Preparation of a Luminescent Porous Framework with NbO Topology by Linking Silver Ions with Gold(I) Clusters. Angew. Chem. Int. Ed. 2014, 53, 12771–12775.
- 9(a) Jin, S.; Liu, W.; Hu, D.; Zou, X.; Kang, X.; Du, W.; Chen, S.; Wei, S.; Wang, S.; Zhu, M. Aggregation-Induced Emission (AIE) in Ag−Au Bimetallic Nanocluster. Chem.-Eur. J. 2018, 24, 3712–3715;
(b) Kang, X.; Wang, S.; Song, Y.; Jin, S.; Sun, G.; Yu, H.; Zhu, M. Bimetallic Au2Cu6 Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species. Angew. Chem. Int. Ed. 2016, 55, 3611–3614;
(c) Wu, X.-H.; Luo, P.; Wei, Z.; Li, Y.-Y.; Huang, R.-W.; Dong, X.-Y.; Li, K.; Zang, S.-Q.; Tang, B. Z. Guest-Triggered Aggregation-Induced Emission in Silver Chalcogenolate Cluster Metal- Organic Frameworks. Adv. Sci. 2019, 6, 1801304.
10.1002/advs.201801304 Google Scholar
- 10(a) Cao, M.; Pang, R.; Wang, Q.-Y.; Han, Z.; Wang, Z.-Y.; Dong, X.-Y.; Li, S.-F.; Zang, S.-Q.; Mak, T. C. W. Porphyrinic Silver Cluster Assembled Material for Simultaneous Capture and Photocatalysis of Mustard- Gas Simulant. J. Am. Chem. Soc. 2019, 141, 14505–14509; (b) Dong, X.-Y.; Huang, H.-L.; Wang, J.-Y.; Li, H.-Y.; Zang, S.-Q. A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chem. Mater. 2018, 30, 2160–2167; (c) Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.
- 11(a) Gunawardene, P. N.; Corrigan, J. F.; Workentin, M. S. Golden Opportunity: A Clickable Azide-Functionalized [Au25(SR)18]– Nanocluster Platform for Interfacial Surface Modifications. J. Am. Chem. Soc. 2019, 141, 11781–11785; (b) Muhammed, M. A. H.; Cruz, L. K.; Emwas, A. H.; El-Zohry, A. M.; Moosa, B.; Mohammed, O. F.; Khashab, N. M. Pillar[5]arene-Stabilized Silver Nanoclusters: Extraordinary Stability and Luminescence Enhancement Induced by Host-Guest Interactions. Angew. Chem. Int. Ed. 2019, 58, 15665–15670; (c) Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T.; Padmos, J. D.; Ayoo, K.; Garrett, P. J.; Nambo, M.; Horton, J. H.; Sargent, E. H.; Hakkinen, H.; Tsukuda, T.; Crudden, C. M. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.
- 12(a) Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. Science 2007, 318, 430–433; (b) Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. A grand unified model for liganded gold clusters. Nat. Commun. 2016, 7, 13574.
- 13 Jin, S.; Wang, S.; Song, Y.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A.; Pei, Y.; Chen, M.; Li, P.; Zhu, M. Crystal Structure and Optical Properties of the [Ag62S12(SBut)32]2+ Nanocluster with a Complete Face-Centered Cubic Kernel. J. Am. Chem. Soc. 2014, 136, 15559–15565.
- 14 Wang, Z.-Y.; Wang, M.-Q.; Li, Y.-L.; Luo, P.; Jia, T.-T.; Huang, R.-W.; Zang, S.-Q.; Mak, T. C. W. Atomically Precise Site-Specific Tailoring and Directional Assembly of Superatomic Silver Nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.
- 15 Li, Y.-L.; Zhang, W.-M.; Wang, J.; Tian, Y.; Wang, Z.-Y.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. W. Photoluminescence modulation of an atomically precise silver(i)–thiolate cluster via site-specific surface engineering. Dalt. Trans 2018, 47, 14884–14888.
- 16 Wang, Z.; Yang, F. L.; Yang, Y.; Liu, Q. Y.; Sun, D. Hierarchical Multi- Shell 66-Nuclei Silver Nanoclusters Trapping Subvalent Ag6 Kernels. Chem. Commun. 2019, 55, 10296–10299.
- 17 Ma, L.; Chen, W.; Schatte, G.; Wang, W.; Joly, A. G.; Huang, Y.; Sammynai-ken, R.; Hossu, M. A new Cu–cysteamine complex: structure and optical properties. J. Mater. Chem. C 2014, 2, 4239–4246.
- 18(a) Bootharaju, M. S.; Burlakov, V. M.; Besong, T. M. D.; Joshi, C. P.; AbdulHalim, L. G.; Black, D. M.; Whetten, R. L.; Goriely, A.; Bakr, O. M. Reversible Size Control of Silver Nanoclusters via Ligand-Exchange. Chem. Mater. 2015, 27, 4289–4297; (b) Eichhöfer, A.; Buth, G.; Lebedkin, S.; Kühn, M.; Weigend, F. Luminescence in Phosphine-Stabilized Copper Chalcogenide Cluster Molecules—A Comparative Study. Inorg. Chem. 2015, 54, 9413–9422; (c) Guidez, E. B.; Mäkinen, V.; Häkkinen, H.; Aikens, C. M. Effects of Silver Doping on the Geometric and Electronic Structure and Optical Absorption Spectra of the Au25–nAgn(SH)18– (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic Nanoclusters. J. Phys. Chem. C 2012, 116, 20617–20624; (d) Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D.-e.; Xie, J. Identification of a Highly Luminescent Au22(SG)18 Nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249; (e) Zeng, C.; Chen, Y.; Li, G.; Jin, R. Magic Size Au64(S-c-C6H11)32 Nanocluster Protected by Cyclohexanethiolate. Chem. Mater. 2014, 26, 2635–2641.
- 19 Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]−: The “Golden” Silver Nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.
- 20(a) Li, X.-Y.; Su, H.-F.; Zhou, R.-Q.; Feng, S.; Tan, Y.-Z.; Wang, X.-P.; Jia, J.; Kurmoo, M.; Sun, D.; Zheng, L.-S. General Assembly of Twisted Trigonal-Prismatic Nonanuclear Silver(I) Clusters. Chem.-Eur. J. 2016, 22, 3019–3028; (b) Yam, V. W.-W. Molecular Design of Transition Metal Alkynyl Complexes as Building Blocks for Luminescent Metal- Based Materials: Structural and Photophysical Aspects. Acc. Chem. Res. 2002, 35, 555–563.
- 21(a) Cantelli, A.; Guidetti, G.; Manzi, J.; Caponetti, V.; Montalti, M. Towards Ultra-Bright Gold Nanoclusters. Eur. J. Inorg. Chem. 2017, 2017, 5068–5084; (b) Forward, J. M.; Bohmann, D.; Fackler, J. P.; Staples, R. J. Luminescence Studies of Gold(I) Thiolate Complexes. Inorg. Chem. 1995, 34, 6330–6336; (c) Montalti, M.; Zaccheroni, N.; Prodi, L.; O'Reilly, N.; James, S. L. Enhanced Sensitized NIR Luminescence from Gold Nanoparticles via Energy Transfer from Surface- Bound Fluorophores. J. Am. Chem. Soc. 2007, 129, 2418–2419.
- 22(a) Gong, Q.; Hu, Z.; Deibert, B. J.; Emge, T. J.; Teat, S. J.; Banerjee, D.; Mussman, B.; Rudd, N. D.; Li, J. Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency. J. Am. Chem. Soc. 2014, 136, 16724–16727; (b) Jiao, D.; Geng, J.; Loh, X. J.; Das, D.; Lee, T.-C.; Scherman, O. A. Supramolecular Peptide Amphiphile Vesicles through Host–Guest Complexation. Angew. Chem. Int. Ed. 2012, 51, 9633–9637; (c) Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang, B. Z. Specific Detection of d-Glucose by a Tetraphenylethene- Based Fluorescent Sensor. J. Am. Chem. Soc. 2011, 133, 660–663; (d) Vinas, C.; Benakki, R.; Teixidor, F.; Casabo, J. Dimethoxyethane as a Solvent for the Synthesis of C-Monosubstituted o-Carborane Derivatives. Inorg. Chem. 1995, 34, 3844–3845.
- 23 CrysAlisPro 2012, Agilent Technologies, Version 1.171.36.31.
- 24 Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122.
- 25 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.