Organic Ligand-Free Hydroformylation with Rh Particles as Catalyst†
Shujuan Liu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049 China
Search for more papers by this authorXingchao Dai
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
Search for more papers by this authorHongli Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023 China
Search for more papers by this authorXinzhi Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Feng Shi
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
E-mail: [email protected]Search for more papers by this authorShujuan Liu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049 China
Search for more papers by this authorXingchao Dai
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
Search for more papers by this authorHongli Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023 China
Search for more papers by this authorXinzhi Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Feng Shi
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, Gansu, 730000 China
E-mail: [email protected]Search for more papers by this authorSummary of main observation and conclusion
An efficient and organic ligand-free heterogeneous catalytic system for hydroformylation of olefins is highly desirable for both academy and industry. In this study, simple Rh black was employed as a heterogeneous catalyst for hydroformylation of olefins in the absence of organic ligand. The Rh black catalyst showed good catalytic activity for a broad substrate scope including the aliphatic and aromatic olefins, affording the desired aldehydes in good yields. Taking the hydroformylation of ethylene as an example, 86% yield of propanal and TOF of 200 h–1 were obtained, which was superior to the reported homogeneous catalytic systems. In addition, the catalyst could be reused five times without loss of activity under identical reaction conditions, and the Rh leaching was negligible after each cycle.
Supporting Information
Filename | Description |
---|---|
cjoc201900427-sup-0001-Supinfo.pdfPDF document, 1.2 MB |
Appendix S1: Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Li, S.; Li, Z.; You, C.; Lv, H.; Zhang, X. Recent Advances in Asymmetric Hydroformylation. Chin. J. Org. Chem. 2019, 39, 1568–1582.
- 2 Neves, A. C. B.; Calvete, M. J. F.; Pinho e Melo, T. M. V. D.; Pereira, M. M. Immobilized Catalysts for Hydroformylation Reactions: A Versatile Tool for Aldehyde Synthesis. Eur. J. Org. Chem. 2012, 6309–6320.
- 3 Van Leeuwen, P. W. N. M.; Claver, C. Rhodium Catalyzed Hydroformylation, Springer Science & Business Media, Kluwer Academic, Dordrecht, The Netherlands, 2002.
- 4 Arpe, H. J. Industrial Organic Chemistry, Wiley-VCH, Weinheim, Germany, 2010.
- 5
Breit, B.; Seiche, W. Recent Advances on Chemo-, Regio- and Stereoselective Hydroformylation. Synthesis 2001, 2001, 1–36.
10.1055/s-2001-9739 Google Scholar
- 6
Gonsalvi, L.; Guerriero, A.; Monflier, E.; Hapiot, F.; Peruzzini, M. The Role of Metals and Ligands in Organic Hydroformylation. In Hydroformylation for Organic Synthesis, Eds.: M. Taddei; A. Mann, Springer, Berlin, Heidelberg, 2013, pp. 1–47.
10.1007/128_2013_430 Google Scholar
- 7 Wu, X. F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Acc. Chem. Res. 2014, 47, 1041–1053.
- 8 Franke, R.; Selent, D.; Borner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.
- 9 Liu, X. H.; Hu, B. S.; Fujimoto, K.; Haruta, M.; Tokunaga, M. Hydroformylation of Olefins by Au/Co3O4 Catalysts. Appl. Catal., B 2009, 92, 411–421.
- 10 Bohnen, H. W.; Cornils, B. Hydroformylation of Alkenes: An Industrial View of the Status and Importance. Adv. Catal. 2002, 47, 1–64.
- 11 Fell, B.; Bahrmann, H. The Hydroformylation of Conjugated Dienes, v Aliphatic Tertiary Phosphines and p-Substituted Phospholanes as Cocatalysts of the Rhodium-Catalysed Hydroformylation of 1,3-Dienes. J. Mol. Catal. A: Chem. 1977, 2, 211–218.
- 12 Gil, W.; Trzeciak, A. M. N-Heterocyclic Carbene–Rhodium Complexes as Catalysts for Hydroformylation and Related Reactions. Coord. Chem. Rev. 2011, 255, 473–483.
- 13 Tsunoi, S.; Ryu, I.; Sonoda, N. Remote Carbonylation - the Synthesis of Delta-Lactones from Saturated Alcohols and Carbon-Monoxide. J. Am. Chem. Soc. 1994, 116, 5473–5474.
- 14 Jia, X.; Ren, X.; Wang, Z.; Xia, C.; Ding, K. Pyrrolyl-Based Phosphoramidite/Rh Catalyzed Asymmetric Hydroformylation of 1,1-Disubstituted Olefins. Chin. J. Org. Chem. 2019, 39, 207.
- 15 Hebrard, F.; Kalck, P. Cobalt-Catalyzed Hydroformylation of Alkenes: Generation and Recycling of the Carbonyl Species, and Catalytic Cycle. Chem. Rev. 2009, 109, 4272–4282.
- 16
Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds, 2nd Ed., Wiley-VCH, Weinheim, 2002.
10.1002/9783527618231 Google Scholar
- 17 Birbeck, J. M.; Haynes, A.; Adams, H.; Damoense, L.; Otto, S. Ligand Effects on Reactivity of Cobalt Acyl Complexes. ACS Catal. 2012, 2, 2512–2523.
- 18 Piras, I.; Jennerjahn, R.; Jackstell, R.; Spannenberg, A.; Franke, R.; Beller, M. A General and Efficient Iridium-Catalyzed Hydroformylation of Olefins. Angew. Chem. Int. Ed. 2011, 50, 280–284.
- 19 Moreno, M. A.; Haukka, M.; Pakkanen, T. A. Promoted Iridium Complexes as Catalysts in Hydroformylation of 1-Hexene. J. Catal. 2003, 215, 326–331.
- 20 Mieczynska, E.; Trzeciak, A. M.; Ziolkowski, J. J.; Kownacki, I.; Marciniec B. Hydroformylation and Related Reactions of Vinylsilanes Catalyzed by Siloxide Complexes of Rhodium(I) and Iridium(I). J. Mol. Catal. A: Chem. 2005, 237, 246–253.
- 21 Fox, D. J.; Duckett, S. B.; Flaschenriem, C.; Brennessel, W. W.; Schneider, J.; Gunay, A.; Eisenberg, R. A Model Iridium Hydroformylation System with the Large Bite Angle Ligand Xantphos: Reactivity with Parahydrogen and Implications for Hydroformylation Catalysis. Inorg. Chem. 2006, 45, 7197–7209.
- 22 Süss-Fink, G.; Schmidt, G. F. Selectivity Studies on the Hydroformylation of Propylene Catalysed by the Cluster Anion [HRu3(CO)11]−. J. Mol. Catal. 1987, 42, 361–366.
- 23 Süss-Fink, G.; Reiner, J. The Cluster Anion [HRu3(CO)11]− as Catalyst in Hydroformylation, Hydrogenation, Silacarbonylation and Hydrosilylation Reactions of Ethylene and Propylene. J. Mol. Catal. 1982, 16, 231–242.
- 24 Knifton, J. F. Syngas reactions: part XI. The Ruthenium ‘Melt’ Catalyzed Oxonation of Internal Olefins. J. Mol. Catal. 1987, 43, 65–77.
- 25 van Duren, R.; van der Vlugt, J. I.; Kooijman, H.; Spek, A. L.; Vogt, D. Platinum-Catalyzed Hydroformylation of Terminal and Internal Octenes. Dalton Trans. 2007, 1053–1059.
- 26 Van der Vlugt, J. I.; Van Duren, R.; Batema, G. D.; Den Heeten, R.; Meetsma, A.; Fraanje, J.; Goubitz, K.; Kamer, P. C.; Van Leeuwen, P. W.; Vogt, D. Platinum Complexes of Rigid Bidentate Phosphine Ligands in the Hydroformylation of 1-Octene. Organometallics 2005, 24, 5377–5382.
- 27 Schwager, I.; Knifton, J. Homogeneous Olefin Hydroformylation Catalyzed by Ligand Stabilized Platinum (II)-Group IVB Metal Halide Complexes. J. Catal. 1976, 45, 256–267.
- 28 Petöcz, G.; Berente, Z.; Kégl, T.; Kollár, L. Xantphos as cis- and trans-Chelating Ligand in Square-Planar Platinum (II) Complexes. Hydroformylation of Styrene with Platinum–Xantphos–Tin(II) Chloride System. J. Organomet. Chem. 2004, 689, 1188–1193.
- 29 Hsu, C.-Y.; Orchin, M. Hydridotrichlorostannatocarbonylbis (triphenylphosphine)platinum(II), PtH(SnCl3)(CO)(PPh3)2, as a Selective Hydroformylation Catalyst. J. Am. Chem. Soc. 1975, 97, 3553–3553.
- 30 Farkas, E.; Kollár, L.; Moret, M.; Sironi, A. Halogen Exchange in Platinum-Phosphine-Tin (II) Halide Systems. Characterization of the Novel PtI(SnCl3)[(2S,4S)-2,4-bis(diphenylphosphino)pentane] Complex. Organometallics 1996, 15, 1345–1350.
- 31 Clarke, M. L. Recent Advances in Homogeneous Catalysis Using Platinum Complexes. Polyhedron 2001, 20, 151–164.
- 32 Konya, D.; Almeida Leñero, K. Q.; Drent, E. Highly Selective Halide Anion-Promoted Palladium-Catalyzed Hydroformylation of Internal Alkenes to Linear Alcohols. Organometallics 2006, 25, 3166–3174.
- 33 Ishii, Y.; Hidai, M. Carbonylation Reactions Catalyzed by Homogeneous Pd–Co Bimetallic Systems. Catal. Today 2001, 66, 53–61.
- 34 Drent, E.; Mul, W.; Budzelaar, P. Teaching a Palladium Polymerization Catalyst to Mono-Oxygenate Olefins. Comments Inorg. Chem. 2002, 23, 127–147.
- 35 Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. Progress in Hydroformylation and Carbonylation. J. Mol. Catal. A: Chem. 1995, 104, 17–85.
- 36 Marchetti, M.; Paganelli, S.; Viel, E. Hydroformylation of Functionalized Olefins Catalyzed by SiO2-Tethered Rhodium Complexes. J. Mol. Catal. A: Chem. 2004, 222, 143–151.
- 37 Borrmann, T.; McFarlane, A.; Ritter, U.; Johnston, J. Rhodium Catalysts Build into the Structure of a Silicate Support in the Hydroformylation of Alkenes. Open Chem. 2013, 11, 561–568.
- 38 Sandee, A. J.; Reek, J. N.; Kamer, P. C.; Van Leeuwen, P. W. A Silica-Supported, Switchable, and Recyclable Hydroformylation- Hydrogenation Catalyst. J. Am. Chem. Soc. 2001, 123, 8468–8476.
- 39 Jagtap, S. A.; Bhosale, M. A.; Sasaki, T.; Bhanage, B. M. Rh/Cu2O Nanoparticles: Synthesis, Characterization and Catalytic Application as A Heterogeneous Catalyst in Hydroformylation Reaction. Polyhedron 2016, 120, 162–168.
- 40 Kontkanen, M.-L.; Tuikka, M.; Kinnunen, N.; Suvanto, S.; Haukka, M. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts. Catalysts 2013, 3, 324–337.
- 41 Sakagami, H.; Ohta, N.; Endo, S.; Harada, T.; Takahashi, N.; Matsuda, T. Location of Active Sites for 3-Pentanone Formation during Ethene Hydroformylation on Rh/Active-Carbon Catalysts. J. Catal. 1997, 171, 449–456.
- 42 Ganga, V. S. R.; Dabbawala, A. A.; Munusamy, K.; Abdi, S. H. R.; Kureshy, R. I.; Khan, N.-u. H.; Bajaj, H. C. Rhodium Complexes Supported on Nanoporous Activated Carbon for Selective Hydroformylation of Olefins. Catal. Commun. 2016, 84, 21–24.
- 43 Li, X.; Zhang, Y.; Meng, M.; Yang, G.; San, X.; Takahashi, M.; Tsubaki, N. Silicalite-1 Membrane Encapsulated Rh/Activated-Carbon Catalyst for Hydroformylation of 1-Hexene with High Selectivity to Normal Aldehyde. J. Membr. Sci. 2010, 347, 220–227.
- 44 Kainulainen, T. A.; Niemela, M. K.; Krause, A. O. I. Hydroformylation of 1-hexene on Rh/C and Co/SiO2 catalysts. J. Mol. Catal. A: Chem. 1997, 122, 39–49.
- 45 Li, B. T.; Li, X. H.; Asami, K.; Fujimoto, K. Hydroformylation of 1-Hexene over Rhodium Supported on Active Carbon Catalyst. Chem. Lett. 2003, 32, 378–379.
- 46 Shi, Y.; Hu, X.; Chen, L.; Lu, Y.; Zhu, B.; Zhang, S.; Huang, W. Boron Modified TiO2 Nanotubes Supported Rh-Nanoparticle Catalysts for Highly Efficient Hydroformylation of Styrene. New J. Chem. 2017, 41, 6120–6126.
- 47 Alini, S.; Bottino, A.; Capannelli, G.; Comite, A.; Paganelli, S. Preparation and Characterisation of Rh/Al2O3 Catalysts and Their Application in the Adiponitrile Partial Hydrogenation and Styrene Hydroformylation. Appl. Catal. A-Gen. 2005, 292, 105–112.
- 48 Navidi, N.; Thybaut, J. W.; Marin, G. B. Experimental Investigation of Ethylene Hydroformylation to Propanal on Rh and Co Based Catalysts. Appl. Catal. A-Gen. 2014, 469, 357–366.
- 49 Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M. L. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts, J. Am. Chem. Soc. 2006, 128, 5279–5282.
- 50 Adint, T. T.; Landis, C. R. Immobilized Bisdiazaphospholane Catalysts for Asymmetric Hydroformylation. J. Am. Chem. Soc. 2014, 136, 7943–7953.
- 51 Arya, P.; Panda, G.; Rao, N. V.; Alper, H.; Bourque, S. C.; Manzer, L. E. Solid-Phase Catalysis: A Biomimetic Approach Toward Ligands on Dendritic Arms to Explore Recyclable Hydroformylation Reactions. J. Am. Chem. Soc. 2001, 123, 2889–2890.
- 52 Bourque, S. C.; Maltais, F.; Xiao, W. J.; Tardif, O.; Alper, H.; Arya, P.; Manzer, L. E. Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica. J. Am. Chem. Soc. 1999, 121, 3035–3038.
- 53 Gao, H. R.; Angelici, R. J. Hydroformylation of 1-Octene under Atmospheric Pressure Catalyzed by Rhodium Carbonyl Thiolate Complexes Tethered to Silica. Organometallics 1998, 17, 3063–3069.
- 54 Huang, L. Effects of Supported Donor Ligands on the Activity and Stability of Tethered Rhodium Complex Catalysts for Hydroformylation. J. Mol. Catal. A: Chem. 2004, 211, 23–33.
- 55 Li, C.; Sun, K.; Wang, W.; Yan, L.; Sun, X.; Wang, Y.; Xiong, K.; Zhan, Z.; Jiang, Z.; Ding, Y. Xantphos Doped Rh/POPs-PPh3 Catalyst for Highly Selective Long-Chain Olefins Hydroformylation: Chemical and DFT Insights into Rh Location and the Roles of Xantphos and pph3. J. Catal. 2017, 353, 123–132.
- 56 Li, C.; Yan, L.; Lu, L.; Xiong, K.; Wang, W.; Jiang, M.; Liu, J.; Song, X.; Zhan, Z.; Jiang, Z.; Ding, Y. Single Atom Dispersed Rh-biphephos& PPh3@porous Organic Copolymers: Highly Efficient Catalysts for Continuous Fixed-Bed Hydroformylation of Propene. Green Chem. 2016, 18, 2995–3005.
- 57
Nowotny, M.; Maschmeyer, T.; Johnson, B. F. G.; Lahuerta, P.; Thomas, J. M.; Davies, J. E. Heterogeneous Dinuclear Rhodium(ii) Hydroformylation Catalysts–Performance Evaluation and Silsesquioxane-Based Chemical Modeling. Angew. Chem. Int. Ed. 2001, 40, 955–958.
10.1002/1521-3773(20010302)40:5<955::AID-ANIE955>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 58 Pérez-Cadenas, M.; Lemus-Yegres, L. J.; Román-Martínez, M. C.; Salinas-Martínez de Lecea, C. Immobilization of a Rh Complex Derived from the Wilkinson's Catalyst on Activated Carbon and Carbon Nanotubes. Appl. Catal. A-Gen. 2011, 402, 132–138.
- 59 Sartipi, S.; Romero, M. J. V.; Rozhko, E.; Que, Z.; Stil, H. A.; de With, J.; Kapteijn, F.; Gascon, J. Dynamic Release-Immobilization of a Homogeneous Rhodium Hydroformylation Catalyst by a Polyoxometalate Metal-Organic Framework Composite. ChemCatChem 2015, 7, 3243–3247.
- 60 Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Enhancement of Hydroformylation Performance via Increasing the Phosphine Ligand Concentration in Porous Organic Polymer Catalysts. Catal. Today 2017, 298, 40–45.
- 61 Sun, Q.; Jiang, M.; Shen, Z.; Jin, Y.; Pan, S.; Wang, L.; Meng, X.; Chen, W.; Ding, Y.; Li, J.; Xiao, F. S. Porous Organic Ligands (Pols) for Synthesizing Highly Efficient Heterogeneous Catalysts. Chem. Commun. 2014, 50, 11844–11847.
- 62 Wang, T.; Wang, W.; Lyu, Y.; Xiong, K.; Li, C.; Zhang, H.; Zhan, Z.; Jiang, Z.; Ding, Y. Porous Rh/BINAP Polymers as Efficient Heterogeneous Catalysts for Asymmetric Hydroformylation of Styrene: Enhanced Enantioselectivity Realized by Flexible Chiral Nanopockets. Chin. J. Catal. 2017, 38, 691–698.
- 63 Zhu, H. Supported Rhodium and Supported Aqueous-Phase Catalyst, and Supported Rhodium Catalyst Modified with Water-Soluble TPPTS Ligands. Appl. Catal. A-Gen. 2003, 245, 111–117.
- 64 Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F. S. Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. J. Am. Chem. Soc. 2015, 137, 5204–5209.
- 65 Tian, M.; Li, H.; Wang, L. Highly Efficient Rh(I)/Tris-H8-Binaphthyl Monophosphite Catalysts for Hydroformylation of Dicyclopentadiene to Dialdehydes. Chin. J. Catal. 2018, 39, 1646–1652.
- 66 Ren, X.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Rh-Catalyzed Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes. J. Mol. Catal. (China) 2016, 30, 497–504.
- 67 Zhang, X. Y.; Zheng, C. Y.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Li, R. X.; Chen, H. Preparation of Silica-Bonded Phosphine and Its Influence on 1-Octene Hydroformylation Catalyzed by Rhodium Complex. Acta Phys.-Chim. Sin. 2015, 31, 738–742.
- 68 Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. Highly Enantioselective Hydroformylation of Olefins Catalyzed by New Phosphinephosphite- Rh(I) Complexes. J. Am. Chem. Soc. 1993, 115, 7033–7034.
- 69 Chaudhari, R. V.; Bhanage, B. M.; Deshpande, R. M.; Delmas, H. Enhancement of Interfacial Catalysis in a Biphasic System Using Catalyst-Binding Ligands. Nature 1995, 373, 501–503.