Metal-Organic Frameworks Derived Porous Carbons: Syntheses, Porosity and Gas Sorption Properties
Xiaokun Pei
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorYifa Chen
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorSiqing Li
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorShenghan Zhang
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorXiao Feng
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorJunwen Zhou
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorCorresponding Author
Bo Wang
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, ChinaSearch for more papers by this authorXiaokun Pei
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorYifa Chen
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorSiqing Li
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorShenghan Zhang
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorXiao Feng
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorJunwen Zhou
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Search for more papers by this authorCorresponding Author
Bo Wang
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, ChinaSearch for more papers by this authorAbstract
Porous carbon materials derived from metal-organic frameworks (MOFs) have been brought into stage due to the intrinsic advantages of MOFs such as high porosity and tailorable structure diversity, which might provide infinite possibility in producing porous carbons with diverse structures and various decorations. Inherited from MOFs, the porosity in carbon materials is an important factor to evaluate the performances of porous carbons (e.g. gas sorption properties, electrochemical and catalytic behaviors). Factors that affect the porosity of porous carbon materials are mainly focused on the porosity of pristine MOFs, additives and conducting conditions. However, during past decades there were still no systematical reports on the influence factors of porosity in MOFs derived porous carbon materials and corresponding gas sorption properties. In this review, we will summarize the performances of MOF-derived carbon materials (i.e. non-doped porous carbons, heteroatoms doped porous carbons, metal/metal oxide decorated porous carbons) and give a detailed discussion about the connections between the properties and four major effects (calcination temperature, loading of additional precursor, post-synthetic treatment as well as intrinsic properties of MOFs).
REFERENCES
- 1 Thomas, K. M.. Catal. Today, 2007, 120, 389.
- 2 Kyotani, T.. Carbon, 2000, 38, 269.
- 3 Yang, S. J.; Jung, H.; Kim, T.; Park, C. R.. Prog. Nat. Sci., 2012, 22, 632.
- 4 Hu, Z. H.; Srinivasan, M. P.; Ni, Y. M.. Adv. Mater., 2000, 12, 62.
- 5 Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M.. Adv. Mater., 2001, 13, 677.
- 6 Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R.. Nature, 2001, 412, 169.
- 7 Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M.. Science, 2009, 323, 760.
- 8 Furukawa, H.; Go, Y. B.; Ko, N.; Park, Y. K.; Uribe-Romo, F. J.; Kim, J.; O'Keeffe, M.; Yaghi, O. M.. Inorg. Chem., 2011, 50, 9147.
- 9 Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gandara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O'Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M.. Science, 2012, 336, 1018.
- 10 Zhou, H. C.; Long, J. R.; Yaghi, O. M.. Chem. Rev., 2012, 112, 673.
- 11 Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.. Nature, 2003, 423, 705.
- 12 Perry, J. J.; Perman, J. A.; Zaworotko, M. J.. Chem. Soc. Rev., 2009, 38, 1400.
- 13 Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M.. Chem. Rev., 2014, 114, 1343.
- 14 Kitagawa, S.; Kitaura, R.; Noro, S.. Angew. Chem., Int. Ed., 2004, 43, 2334.
- 15 Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M.. Acc. Chem. Res., 2001, 34, 319.
- 16 Flandrois, S.; Simon, B.. Carbon, 1999, 37, 165.
- 17 Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H.. Adv. Mater., 2012, 24, 2047.
- 18 Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J.. Nano Lett., 2014, 14, 153.
- 19 Sanchez-Sanchez, A.; Suarez-Garcia, F.; Martinez-Alonso, A.; Tascon, J. M. D.. J. Colloid Interface Sci., 2015, 450, 91.
- 20 Mei, Z. J.; Shen, Z. M.; Yuan, T.; Wang, W. H.; Han, H. B.. Fuel Process. Technol., 2007, 88, 623.
- 21 Li, Y.; Zhu, S. M.; Liu, Q. L.; Chen, Z. X.; Gu, J. J.; Zhu, C. L.; Lu, T.; Zhang, D.; Ma, J.. Water Res., 2013, 47, 4188.
- 22 Zhao, Z. K.; Dai, Y. T.; Ge, G. F.; Wang, G. R.. AlChE J., 2015, 61, 2543.
- 23 Liu, C.; Tang, P.; Chen, A. B.; Hu, Y. Q.; Yu, Y. F.; Lv, H. J.; Ma, D.. Mater. Lett., 2013, 108, 285.
- 24 Li, Z. L.; Liu, J. H.; Xia, C. G.; Li, F. W.. ACS Catal., 2013, 3, 2440.
- 25 Lee, J.; Kim, J.; Hyeon, T.. Adv. Mater., 2006, 18, 2073.
- 26 Wang, J. C.; Kaskel, S.. J. Mater. Chem., 2012, 22, 23710.
- 27 Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K.. Chem. Commun., 2005, 2125.
- 28 Matsuoka, T.; Hatori, H.; Kodama, M.; Yamashita, J.; Miyajima, N.. Carbon, 2004, 42, 2346.
- 29 Horikawa, T.; Hayashi, J.; Muroyama, K.. Carbon, 2004, 42, 1625.
- 30 Lu, A. H.; Schuth, F.. Adv. Mater., 2006, 18, 1793.
- 31 Sun, J. K.; Xu, Q.. Energy Environ. Sci., 2014, 7, 2071.
- 32 Hu, M.; Reboul, J.; Furukawa, S.; Torad, N. L.; Ji, Q. M.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y.. J. Am. Chem. Soc., 2012, 134, 2864.
- 33 Aijaz, A.; Fujiwara, N.; Xu, Q.. J. Am. Chem. Soc., 2014, 136, 6790.
- 34 Pandolfo, A. G.; Hollenkamp, A. F.. J. Power Sources, 2006, 157, 11.
- 35 Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M.. Nature, 1999, 402, 276.
- 36 Jiang, L.; Wang, X.; Wu, H.; Wu, C.; Zhao, Q.; Song, Y.. J. Cent. South Univ. (Sci. Technol.), 2013, 44, 4012 (in Chinese).
- 37 Zuo, L.; Chen, S. H.; Wu, J. F.; Wang, L.; Hou, H. Q.; Song, Y. H.. RSC Adv., 2014, 4, 61604.
- 38 Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G.. J. Mater. Chem. A, 2013, 1, 4490.
- 39 Lai, Y. Q.; Gan, Y. Q.; Zhang, Z. A.; Chen, W.; Li, J.. Electrochim. Acta, 2014, 146, 134.
- 40 Li, J. S.; Chen, Y. Y.; Tang, Y. J.; Li, S. L.; Dong, H. Q.; Li, K.; Han, M.; Lan, Y. Q.; Bao, J. C.; Dai, Z. H.. J. Mater. Chem. A, 2014, 2, 6316.
- 41 Li, J. S.; Li, S. L.; Tang, Y. J.; Li, K.; Zhou, L.; Kong, N.; Lan, Y. Q.; Bao, J. C.; Dai, Z. H.. Sci. Rep., 2014, 4, 8.
- 42 Banerjee, A.; Upadhyay, K. K.; Puthusseri, D.; Aravindan, V.; Madhavi, S.; Ogale, S.. Nanoscale, 2014, 6, 4387.
- 43 Lim, S.; Suh, K.; Kim, Y.; Yoon, M.; Park, H.; Dybtsev, D. N.; Kim, K.. Chem. Commun., 2012, 48, 7447.
- 44 Liu, B.; Shioyama, H.; Akita, T.; Xu, Q.. J. Am. Chem. Soc., 2008, 130, 5390.
- 45 Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q.. Carbon, 2010, 48, 456.
- 46 Hu, J. A.; Wang, H. L.; Gao, Q. M.; Guo, H. L.. Carbon, 2010, 48, 3599.
- 47 Jin, S. L.; Deng, H. G.; Zhan, L.; Qiao, W. M.; Ling, L. C.. New Carbon Mater., 2012, 27, 87 (in Chinese).
- 48 Bao, W. Z.; Zhang, Z. A.; Chen, W.; Zhou, C. K.; Lai, Y. Q.; Li, J.. Electrochim. Acta, 2014, 127, 342.
- 49 Fletcher, E. A.. Ind. Eng. Chem. Res., 1999, 38, 2275.
- 50 Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R.. Chem. Mater., 2012, 24, 464.
- 51 Sakintuna, B.; Yurum, Y.. Microporous Mesoporous Mater., 2006, 93, 304.
- 52 Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M.. Nature, 2004, 427, 523.
- 53 Wang, W. Q.; Yuan, D. Q.. Sci. Rep., 2014, 4, 7.
- 54 Aijaz, A.; Akita, T.; Yang, H.; Xu, Q.. Chem. Commun., 2014, 50, 6498.
- 55 Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q.. J. Am. Chem. Soc., 2011, 133, 11854.
- 56 Pachfule, P.; Biswal, B. P.; Banerjee, R.. Chem.-Eur. J., 2012, 18, 11399.
- 57 Almasoudi, A.; Mokaya, R.. J. Mater. Chem., 2012, 22, 146.
- 58 Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M.. Science, 2002, 295, 469.
- 59 Fang, Q. R.; Zhu, G. S.; Xin, M. H.; Zhang, D. L.; Shi, X.; Wu, G.; Tian, G.; Tang, L. L.; Xue, M.; Qiu, S. L.. Chem. J. Chin. Univ., 2004, 25, 1016 (in Chinese).
- 60 Radhakrishnan, L.; Reboul, J.; Furukawa, S.; Srinivasu, P.; Kitagawa, S.; Yamauchi, Y.. Chem. Mater., 2011, 23, 1225.
- 61 Yan, X. L.; Li, X. J.; Yan, Z. F.; Komarneni, S.. Appl. Surf. Sci., 2014, 308, 306.
- 62 Li, Z. Q.; Yin, L. W.. Nanoscale, 2015, 7, 9597.
- 63 Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Ferey, G.; Stock, N.. Inorg. Chem., 2009, 48, 3057.
- 64 Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Ferey, G.. Angew. Chem., Int. Ed., 2006, 45, 8227.
- 65 Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J.; Takata, M.; Kubota, Y.; Kitagawa, S.. J. Am. Chem. Soc., 2008, 130, 13664.
- 66 Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M.. Angew. Chem., Int. Ed., 2006, 45, 1557.
- 67 Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P.. Chem. Commun., 2011, 47, 2071.
- 68 Bennett, T. D.; Cao, S.; Tan, J. C.; Keen, D. A.; Bithell, E. G.; Beldon, P. J.; Friscic, T.; Cheetham, A. K.. J. Am. Chem. Soc., 2011, 133, 14546.
- 69 Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M.. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 10186.
- 70 Chaikittisilp, W.; Hu, M.; Wang, H. J.; Huang, H. S.; Fujita, T.; Wu, K. C. W.; Chen, L. C.; Yamauchi, Y.; Ariga, K.. Chem. Commun., 2012, 48, 7259.
- 71 Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y.. J. Mater. Chem. A, 2014, 2, 19848.
- 72 Qu, Q. T.; Yun, J. J.; Wan, Z. M.; Zheng, H. Y.; Gao, T.; Shen, M.; Shao, J.; Zheng, H. H.. RSC Adv., 2014, 4, 64692.
- 73 Shi, Y. W.; Zhang, X. W.; Wang, L.; Liu, G. Z.. AlChE J., 2014, 60, 2747.
- 74 Yi, H.; Wang, H. W.; Jing, Y. T.; Peng, T. Q.; Wang, X. F.. J. Power Sources, 2015, 285, 281.
- 75 Li, Z. Q.; Yin, L. W.. ACS Appl. Mater. Interfaces, 2015, 7, 4029.
- 76 Han, Y. Z.; Qi, P. F.; Li, S. W.; Feng, X.; Zhou, J. W.; Li, H. W.; Su, S. Y.; Li, X. G.; Wang, B.. Chem. Commun., 2014, 50, 8057.
- 77 Gadipelli, S.; Guo, Z. X.. ChemSusChem, 2015, 8, 2123.
- 78 Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M.. Science, 2008, 319, 939.
- 79 Jeon, J. W.; Sharma, R.; Meduri, P.; Arey, B. W.; Schaef, H. T.; Lutkenhaus, J. L.; Lemmon, J. P.; Thallapally, P. K.; Nandasiri, M. I.; McGrail, B. P.; Nune, S. K.. ACS Appl. Mater. Interfaces, 2014, 6, 7214.
- 80 Zhao, X. J.; Zhao, H. Y.; Zhang, T. T.; Yan, X. C.; Yuan, Y.; Zhang, H. M.; Zhao, H. J.; Zhang, D. M.; Zhu, G. S.; Yao, X. D.. J. Mater. Chem. A, 2014, 2, 11666.
- 81 Hao, F.; Li, L.; Zhang, X. H.; Chen, J. H.. Mater. Res. Bull., 2015, 66, 88.
- 82 Wang, X.; Zhong, W.; Li, Y. W.. Catal. Sci. Technol., 2015, 5, 1014.
- 83 Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L.. Chem.-Eur. J., 2014, 20, 16377.
- 84 Wang, X. J.; Zhou, J. W.; Fu, H.; Li, W.; Fan, X. X.; Xin, G. B.; Zheng, J.; Li, X. G.. J. Mater. Chem. A, 2014, 2, 14064.
- 85 Afsahi, F.; Vinh-Thang, H.; Mikhailenko, S.; Kaliaguine, S.. J. Power Sources, 2013, 239, 415.
- 86 Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y.. Small, 2014, 10, 2096.
- 87 Kim, J.; McNamara, N. D.; Her, T. H.; Hicks, J. C.. ACS Appl. Mater. Interfaces, 2013, 5, 11479.
- 88 Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M.. J. Am. Chem. Soc., 2010, 132, 14382.
- 89 Gao, C. Y.; Liu, S. X.; Xie, L. H.; Ren, Y. H.; Cao, J. F.; Sun, C. Y.. CrystEngComm, 2007, 9, 545.
- 90 Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J.. Nano Res., 2014, 7, 774.
- 91 Sun, N. R.; Zhang, X. M.; Deng, C. H.. Nanoscale, 2015, 7, 6487.
- 92 Wang, X. Q.; Liu, L. M.; Makarenko, T.; Jacobson, A. J.. Cryst. Growth Des., 2010, 10, 1960.
- 93 Shiva, K.; Jayaramulu, K.; Rajendra, H. B.; Maji, T.; Bhattacharyya, A. J.. Z. Anorg. Allg. Chem., 2014, 640, 1115.
- 94 Liu, J.; Zhao, Q. L.; Wu, C.; Wang, Y.; Wei, W.; Wang, X. Y.; Yi, L. H.. RSC Adv., 2014, 4, 17129.
- 95 Zheng, S. T.; Mao, C. Y.; Wu, T.; Lee, S. Y.; Feng, P. Y.; Bu, X. H.. J. Am. Chem. Soc., 2012, 134, 11936.
- 96 Kong, A. G.; Lin, Q. P.; Mao, C. Y.; Bu, X. H.; Feng, P. Y.. Chem. Commun., 2014, 50, 15619.
- 97 Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D.. Science, 1999, 283, 1148.
- 98 Zhang, Y. F.; Qiu, L. G.; Yuan, Y. P.; Zhu, Y. J.; Jiang, X.; Xiao, J. D.. Appl. Catal., B, 2014, 144, 863.
- 99 Song, P.; Li, Y. Q.; Li, W.; He, B.; Yang, J. Z.; Li, X. G.. Int. J. Hydrogen Energy, 2011, 36, 10468.
- 100 Yang, S. J.; Im, J. H.; Kim, T.; Lee, K.; Park, C. R.. J. Hazard. Mater., 2011, 186, 376.
- 101 Ma, J. J.; Wang, H. J.; Yang, X.; Chai, Y. Q.; Yuan, R.. J. Mater. Chem. A, 2015, 3, 12038.
- 102 Lu, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S.. ACS Appl. Mater. Interfaces, 2015, 7, 13604.
- 103 Lin, K. Y. A.; Chang, H. A.; Chen, R. C.. Chemosphere, 2015, 130, 66.
- 104 Aiyappa, H. B.; Pachfule, P.; Banerjee, R.; Kurungot, S.. Cryst. Growth Des., 2013, 13, 4195.
- 105 Wang, H. T.; Yao, J. F.. Ind. Eng. Chem. Res., 2006, 45, 6393.
- 106 Xia, Y. D.; Mokaya, R.; Walker, G. S.; Zhu, Y. Q.. Adv. Energy Mater., 2011, 1, 678.
- 107 Sun, J. K.; Xu, Q.. Chem. Commun., 2014, 50, 13502.
- 108 Srinivas, G.; Krungleviciute, V.; Guo, Z. X.; Yildirim, T.. Energy Environ. Sci., 2014, 7, 335.
- 109 Zhou, Y. G.; Zu, X. T.; Gao, F.; Nie, J. L.; Xiao, H. Y.. J. Appl. Phys., 2009, 105, 4.
- 110 Wang, L. F.; Yang, F. H.; Yang, R. T.. AlChE J., 2009, 55, 1823.
- 111 Amali, A. J.; Sun, J. K.; Xu, Q.. Chem. Commun., 2014, 50, 1519.