Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone Catalyzed by Iron Complexes
Nan Dai
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorRui Shang
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorMingchen Fu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorCorresponding Author
Yao Fu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China, Tel.: 0086-0551-63607476; Fax: 0086-0551-63606689Search for more papers by this authorNan Dai
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorRui Shang
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorMingchen Fu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorCorresponding Author
Yao Fu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China, Tel.: 0086-0551-63607476; Fax: 0086-0551-63606689Search for more papers by this authorAbstract
Conversion of biomass-derived ethyl levulinate to γ-valerolactone is realized by using homogeneous iron-catalyzed transfer hydrogenation (CTH). By utilizing Casey's catalyst and cheap isopropanol as hydrogen source, γ-valerolactone can be generated in 95% yield. Addition of catalytic amount of base is important to achieve good yield.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201500035_sm_suppl.pdf237.2 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a Mäki-Arvela, P.; Holmbom, B.; Salmi, T.. Catal. Rev., 2007, 49, 197.
- 1b Corma, A.; Iborra, S.; Velty, A.. Chem. Rev., 2007, 107, 2411.
- 1c Climent, M. J.; Corma, A.; Iborra, S.. Green Chem., 2011, 13, 520.
- 1d Gallezot, P.. Chem. Soc. Rev., 2012, 41, 1538.
- 1e Alonso, D. M.; Bond, J. Q.; Dumesic, J. A.. Green Chem., 2010, 12, 1493.
- 1f Huber, G. W.; Corma, A.. Angew. Chem., Int. Ed., 2007, 46, 7184.
- 1g Ragauskas, A. J.; Williams, C. K.; Davison, B. H.. Science, 2006, 311, 484.
- 1h Chheda, J. N.; Huber, G. W.; Dumesic, J. A.. Angew. Chem., Int. Ed., 2007, 46, 7164.
- 1i Li, J.; Huang, Y. B.; Guo, Q. X.; Fu, Y.. Acta Chim. Sinica, 2014, 72, 1223.
- 2a Bond, J. Q.; Alonso, D. M.; Wang, D.; Dumesic, J. A.. Science, 2010, 327, 1110.
- 2b Horváth, I. T.. Green Chem., 2008, 10, 1024.
- 2c Serrano-Ruiz, J. C.; Luque, R.; Sepúlveda-Escribano, A.. Chem. Soc. Rev., 2011, 40, 5266.
- 2d Mascal, M.; Dutta, S.; Gandarias, I.. Angew. Chem., Int. Ed., 2014, 53, 1854.
- 2e Horváth, I. T.; Mehdi, H.; Fábos, V.. Green Chem., 2008, 10, 238.
- 2f Yang, Z.; Fu, Y.; Guo, Q. X.. Chin. J. Org. Chem., 2015, DOI: 10.6023/cjoc201409012.
- 3a Yang, Z.; Huang, Y. B.; Guo, Q. X.; Fu, Y.. Chem. Commun., 2013, 49, 5328.
- 3b
Bui, L.;
Luo, H.;
Gunther, W. R.;
Román-Leshkov, Y..
Angew. Chem., Int. Ed.,
2013,
125,
8180.
10.1002/ange.201302575 Google Scholar
- 3c Alonso, D. M.; Wettstein, S. G.; Mellmer, M. A.; Gurbuz, E. I.; Dumesic, J. A.. Energ. Environ. Sci., 2013, 6, 76.
- 3d Lange, J. P.; Price, R.; Ayoub, P. M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H.. Angew. Chem., Int. Ed., 2010, 49, 4479.
- 3e
Du, X. L.;
He, L.;
Zhao, S.;
Liu, Y. M.;
Cao, Y.;
He, H. Y.;
Fan, K. N..
Angew. Chem., Int. Ed.,
2011,
123,
7961.
10.1002/ange.201100102 Google Scholar
- 3f Deng, L.; Zhao, Y.; Li, J.; Fu, Y.; Liao, B.; Guo, Q. X.. ChemSusChem, 2010, 3, 1172.
- 4a Deng, L.; Li, J.; Lai, D. M.; Fu, Y.; Guo, Q. X.. Angew. Chem., Int. Ed., 2009, 48, 6529.
- 4b Fu, M. C.; Shang, R.; Huang, Z.; Fu, Y.. Synlett, 2014, 25, 2748.
- 4c Li, W.; Xie, J. H.; Lin, H.; Zhou, Q. L.. Green Chem., 2012, 14, 2388.
- 4d Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I. T.. Top. Catal., 2008, 48, 49.
- 4e Fábos, V.; Mika, L. T.; Horvaáth, I. T.. Organometallics, 2014, 33, 181.
- 4f Osakada, K.; Ikariya, T.; Yoshikawa, S.. J. Organomet. Chem., 1982, 231, 79.
- 4g Geilen, F.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W.. Angew. Chem., Int. Ed., 2010, 122, 5642.
- 4h Yan, K.; Chen, A.. Fuel, 2014, 115, 101.
- 5a Zhou, H.; Song, J.; Fan, H.. Green Chem., 2014, 16, 3870.
- 5b Tang, X.; Sun, Y.; Zeng, X.. Energy Fuels, 2014, 28, 4251.
- 5c Tang, X.; Chen, H.; Hu, L.. Appl. Catal. B-Environ., 2014, 147, 827.
- 5d Hengne, A. M.; Rode, C. V.. Green Chem., 2012, 14, 1064.
- 5e Du, X. L.; Bi, Q.; Liu, Y. M.. ChemSusChem, 2011, 4, 1838.
- 5f Chia, M.; Dumesic, J. A.. Chem. Commun., 2011, 47, 12233.
- 6a Junge, K.; Schröder, K.; Beller, M.. Chem. Commun., 2011, 47, 4849.
- 6b Morris, R. H.. Chem. Soc. Rev., 2009, 38, 2282.
- 6c Enthaler, S.; Junge, K.; Beller, M.. Angew. Chem., Int. Ed., 2008, 47, 3317.
- 6d Gaillard, S.; Renaud, J. L.. ChemSusChem, 2008, 1, 505.
- 7
Lu, L. Q.;
Li, Y.;
Junge, K.;
Beller, M..
Angew. Chem., Int. Ed.,
2013,
125,
8540.
10.1002/ange.201301972 Google Scholar
- 8 Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Beller, M.. Science, 2011, 333, 1733.
- 9 Wienhoefer, G.; Westerhaus, F. A.; Junge, K.; Beller, M.. J. Organomet. Chem., 2013, 744, 156.
- 10a Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D.. Angew. Chem., Int. Ed., 2011, 123, 2168.
- 10b Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D.. Chem. Eur. J., 2012, 18, 7196.
- 11a Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H.. Science, 2013, 342, 1080.
- 11b Mikhailine, A.; Lough, A. J.; Morris, R. H.. J. Am. Chem. Soc., 2009, 131, 1394.
- 11c Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris, R. H.. J. Am. Chem. Soc., 2012, 134, 5893.
- 11d Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.; Wan, K. Y.; Lough, A. J.; Morris, R. H.. J. Am. Chem. Soc., 2014, 136, 1367.
- 12 Li, Y.; Yu, S.; Wu, X.; Xiao, J.; Shen, W.; Dong, Z.; Gao, J.. J. Am. Chem. Soc., 2014, 136, 4031.
- 13a
Inagaki, T.;
Ito, A.;
Ito, J.;
Nishiyama, H..
Angew. Chem., Int. Ed.,
2010,
122,
9574.
10.1002/ange.201005363 Google Scholar
- 13b Nishiyama, H.; Furuta, A.. Chem. Commun., 2007, 7, 760.
- 14a Fleischer, S.; Zhou, S.; Junge, K.; Beller, M.. Angew. Chem., Int. Ed., 2013, 52, 5120.
- 14b Enthaler, S.; Spilker, B.; Erre, G.; Junge, K.; Tse, M. K.; Beller, M.. Tetrahedron Lett., 2008, 64, 3867.
- 14c Enthaler, S.; Hagemann, B.; Erre, G.; Junge, K.; Beller, M.. Chem. Asian. J., 2006, 1, 598.
- 15a Casey, C. P.; Guan, H.. J. Am. Chem. Soc., 2007, 129, 5816.
- 15b Moyer, S. A.; Funk, T. W.. Tetrahedron Lett., 2010, 51, 5430.
- 15c Plank, T. N.; Drake, J. L.; Kim, D. K.. Adv. Synth. Catal., 2012, 354, 597.
- 15d Quintard, A.; Rodriguez, J.. Angew. Chem., Int. Ed., 2014, 53, 4044.
- 15e Moulin, S.; Dentel, H.; Pagnoux-Ozherelyeva, A.. Chem. Eur. J., 2013, 19, 17881.
- 16a Ajjou, A. N.; Pinet, J. L.. J. Mol. Catal. A-Chem., 2004, 214, 203.
- 16b Almeida, M. L. S.; Beller, M.; Wang, G. Z.. Chem. Eur. J., 1996, 2, 1533.
- 16c Wang, G. Z.; Bäckvall, J. E.. J. Chem. Soc., 1992, 14, 980.
- 16d Zaitsev, A. B.; Adolfsson, H.. Org. Lett., 2006, 8, 5129.
- 17 Assary, R. S.; Curtiss, L. A.. Chem. Phys. Lett., 2012, 541, 21.