CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1:1 Combination of Phenanthroline and Bipyridine as the Ligands
Yu Liu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
Search for more papers by this authorCorresponding Author
Shengming Ma
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China, Fax: (+86)-21-6260-9305Search for more papers by this authorYu Liu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
Search for more papers by this authorCorresponding Author
Shengming Ma
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China, Fax: (+86)-21-6260-9305Search for more papers by this authorAbstract
We developed a modified protocol for the oxidation of 2,3-allenyl alcohols using CuCl with 1:1 combination of phenanthroline and bipyridine as the catalyst. To further investigate the applicability of this system, other types of alcohols such as allylic and propargylic alcohols have been tested: we found that both allylic and propargylic alcohols may be oxidized to the corresponding aldehydes or ketones using molecular oxygen in air as the oxidant with moderate to excellent yields.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
cjoc_201100476_sm_suppl.pdf215.2 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1For monographs on the oxidation of alcohols, see:
- 1a Sheldon, R. A.; Kochi, J. K., Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
- 1b Trost, B. M.; Fleming, I.; Ley, S. V., Comprehensive Organic Synthesis, Vol. 7, Pergamon, Oxford, 1991.
- 2 Anastas, P.; Warner, J., Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.
- 3 Fatiadi, A. J.. Synthesis, 1976, 65.
- 4
Cainelli, G.;
Cardillo, G.,
Chromium Oxidations in Organic Chemistry, Springer, Berlin, 1984.
10.1007/978-3-642-69362-5 Google Scholar
- 5For some recent reviews on transition metal catalyzed oxidation of alcohols, see:
- 5a Besson, M.; Gallezot, P.. Catal. Today, 2000, 57, 127.
- 5b Sheldon, R. A.; Arends, I. W. C. E.; Dijksman, A.. Catal. Today, 2000, 57, 157.
- 5c Mallat, T.; Baiker, A.. Chem. Rev., 2004, 104, 3037.
- 5d Zhan, B.-Z.; Thompson, A.. Tetrahedron, 2004, 60, 2917.
- 5e Schultz, M. J.; Sigman, M. S.. Tetrahedron, 2006, 62, 8227.
- 6For selected reviews, see:
- 6a Schuster, D. I.; Lem, G.; Kaprinidis, N. A.. Chem. Rev., 1993, 93, 3.
- 6b Lévai, A.. Chem. Heterocycl. Compd., 1997, 33, 647.
- 6c Huddleston, R. R.; Krische, M. J.. Synlett, 2003, 12.
- 6d Martins, M. A. P.; Cunico, W.; Pereira, C. M. P.; Sinhorin, A. P.; Flores, A. F. C.; Bonacorso, H. G.; Zanatta, N.. Curr. Org. Synth., 2004, 391.
- 6e Tsogoeva, S. B., Eur. J. Org. Chem, 2007, 1701.
- 6f López, F.; Minnaard, A. J.; Feringa, B. L.. Acc. Chem. Res., 2007, 40, 179.
- 6g Lattanzi, A.. Curr. Org. Synth., 2008, 5, 117.
- 6h Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M.. Chem. Rev., 2008, 108, 2796.
- 7a Lawrence, N. J.; McGown, A. T.. Curr. Pharm. Design, 2005, 11, 1679.
- 7b Go, M. L.; Wu, X.; Liu, X. L.. Curr. Med. Chem., 2005, 12, 483.
- 8 Nelson, A., Science of Synthesis, Vol. 26, Stuttgart, New York, 2005, p. 971.
- 9For recent reviews on aerobic oxidation of alcohols:
- 9a Zhan, B.-Z.; Thompson, A.. Tetrahedron, 2004, 60, 2917.
- 9b Schultz, M. J.; Sigman, M. S.. Tetrahedron, 2006, 62, 8227.
- 9c Vinod, C. P.; Wilson, K.; Lee, A. F.. J. Chem. Technol. Biotechnol., 2011, 86, 161.
- 10a Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F.. Angew. Chem., Int. Ed., 2007, 46, 8593.
- 10b Lee, A. F.; Ellis, C. V.; Naughton, J. N.; Newton, M. A.; Parlett, C. M. A.; Wilson, K., J. Am. Chem. Soc., 2011, 133, 5724.
- 10c Lee, A. F.; Gee, J. J.; Theyers, H.. J. Green Chem., 2000, 2, 279.
- 11 Abad, A.; Almela, C.; Corma, A.; García, H.. Chem. Commun., 2006, 3178.
- 12 Lee, M.; Chang, S.. Tetrahedron Lett., 2000, 41, 7507.
- 13 Tonucci, L.; Nicastro, M.; d'Alessandro, N.; Bressan, M.; D'Ambrosio, P.; Morvillo, A.. Green Chem., 2009, 11, 816.
- 14 Farhadi, S.; Zabardasti, A.; Babazadeh, Z.. Tetrahedron Lett., 2006, 47, 8953.
- 15
Neumann, R.;
Khenkin, A. M.;
Vigdergauz, I..
Chem. Eur. J.,
2000,
6,
875.
10.1002/(SICI)1521-3765(20000303)6:5<875::AID-CHEM875>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 16a Maeda, Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.; Uemura, S.. Tetrahedron Lett., 2001, 42, 8877.
- 16b Maeda, Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.; Kawamura, T.; Uemura, S.. J. Org. Chem., 2002, 67, 6718.
- 16c Maeda, Y.; Washitake, Y.; Nishimura, T.; Iwai, K.; Yamauchi, T.; Uemura, S.. Tetrahedron, 2004, 60, 9031.
- 17 Blay, G.; Cardona, L.; Fernández, I.; Pedro, J. R.. Synthesis, 2007, 3329.
- 18 Hanson, S. K.; Wu, R.; Silks, L. A. P.. Org. Lett., 2011, 13, 1908.
- 19 Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S.. Adv. Synth. Catal., 2011, 353, 1005.
- 20a Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J.. Science, 1996, 274, 2044.
- 20b Markó, I. E.; Gautier, A.; C.-Regnaut, I.; Giles, P. R.; Tsukazaki, M.; Urch, C. J.; Brown, S. M., J. Org. Chem., 1998, 63, 7576.
- 20c Markó, I. E.; Giles, P. R.; Tsukazaki, M.; C.-Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J.. J. Org. Chem., 1999, 64, 2433.
- 21 Markó, I. E.; Gautier, A.; Dumeunier, R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch, C. J., Angew. Chem., Int. Ed., 2004, 43, 1588.
- 22a Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A.. Chem. Commun., 2003, 2414.
- 22b Gamez, P.; Arends, I. W. C. E.; Sheldon, R. A.; Reedijk, J.. Adv. Synth. Catal., 2004, 346, 805.
- 23 Gao, S.; Liu, Y.; Ma, S.. Beilstein J. Org. Chem., 2011, 7, 396.
- 24 Zeng, V.; Ballard, T. E.; Melander, C.. Tetrahedron Lett., 2006, 47, 5923.
- 25 Tanaka, K.; Shoji, T.. Org. Lett., 2005, 7, 3561.
- 26 Danishefsky, S.; Cain, P.. J. Org. Chem., 1975, 40, 3606.
- 27 Delaude, L.; Masdeu, A. M.; Alper, H.. Synthesis, 1994, 1149.
- 28 Hansen, A.-L. L.; Murray, A.; Tanner, D.. Org. Biomol. Chem., 2006, 4, 4497.
- 29 Gleiter, R.; Merger, M.. Synthesis, 1995, 969.