Theoretical Design of High-spin Organic Molecules with —·N—N— as a Spin-containing Fragment and Heterocycles as an End Group
De-Qing Chu
Faculty of Material and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China
Search for more papers by this authorJing-Ping Zhang
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorRong-Shun Wang
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorDe-Qing Chu
Faculty of Material and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China
Search for more papers by this authorJing-Ping Zhang
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorRong-Shun Wang
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorAbstract
Novel stable high spin molecules possessing three different arranged fashions are designed with –·N–N< as a spin-containing (SC) fragment, various aromatic, such as benzene (1), pyridine (2), pyridazine (3), pyrimidine (4), pyrazine (5), triazine (6) as end groups (EG) and phenyl as a ferromagnetic coupling (FC) unit. The effects of a different end groups on the spin multiplicities of the ground states and their stabilities were investigated by means of AM1-CI approach. It has been found that the spin densities on the two atoms of the SC fragment are different from delocalization resulting in the specific stability of –·N–N<. In these molecules, the stabilities of the triplet states decrease when the distance between the atoms of central SC (–N–) increases. The orders of the stability of triplet states for 1an, 1bn, 1cn [They are isomers in which SC is connected with FC in different way (1an, N1NNN1; 1bn, N1N N1N; 1cn, NN1N1N) and six heterocycles are EG] show that the stability of triplet states with heterocycles as end groups is higher than that with phenyl as end groups, and in the order:triazine (EG)>pyrimidine, pyrazine>pyridine, pyridazine.
REFERENCES
- 1a Coulson, C. A.; Rushbrooke, G. S.. Proc. Cambridge Philos., 1940, 36, 193.
- 1b Longuet-Higgins, H. C.. J. Chem. Phys., 1950, 18, 265.
- 2a Tyutulkov, N.; Polansky, O. E.. Chem. Phys. Lett., 1987, 139, 281.
- 2b Karabunarliev, S.; Tyutulkov, N.. Theor. Chim. Acta, 1989, 76, 65.
- 3 Ovchinnikov, A. A.. Theor. Chim. Acta, 1987, 47, 297.
- 4 Mataga, N.. Theor. Chim. Acta, 1968, 10, 372.
- 5a Klein, D. J.. J. Chem. Phys., 1982, 77, 3098.
- 5b Lahti, P. M.; Rossi, A. R.; Berson, J. A.. J. Am. Chem. Soc., 1985, 107, 2273.
- 5c Sinha, B.; Albert, I. D. L.; Ramasesha, S.. Phys. Rev. B, 1990, 42, 9088.
- 6a Borden, W. T.; Davidson, E. R.. J. Am. Chem. Soc., 1977, 99, 4587.
- 6b Borden, W. T.. In Diradicals, Ed.: W. T. Borden, Wiley, New York, 1982, p. 1.
- 6c Borden, W. T.; Iwamura, H.; Berson, J. A.. Acc. Chem. Res., 1994, 27, 109.
- 7 Prasad, B. L. V.; Radhakrishnan, T. P.. J. Phys. Chem., 1992, 96, 9232.
- 8a Radhakrishnan, T. P.. Tetrahedron Lett., 1991, 32, 4601.
- 8b Radhakrishnan, T. P.. Tetrahedron Lett., 1993, 34, 4399.
- 8c Radhakrishnan, T. P.. Chem. Phys. Lett., 1993, 207, 15.
- 9a Shoji, M.; Koizumi, K.; Hamamoto, T.. Polyhedon, 2005, 24, 2708.
- 9b Ducasse, L.. Chem. Phys. Lett., 2002, 352, 454.
- 10 Maekawa, K.; Shiomi, D.; Ise, T.. J. Phys. Chem. B, 2005, 109, 3303.
- 11 Ali, M. E.; Vyas, S.; Datta, S. N.. J. Phys. Chem. A, 2005, 109, 6272.
- 12a Molecular Properties of Organic Materials, Ed.: P. M Lahti., Dekker, New York, 1999.
- 12b Miller, J. S.; Drillon, M., Magnetism-Molecules to Materials, Willey-VCH, Weinheim, 2001.
- 12c Sakakibara, T.; Miyazaki, Y.; Ishida, T.. J. Phys. Chem. B, 2002, 106, 6390.
- 12d Monguchi, K.; Itoh, T.; Hirai, K.. J. Am. Chem. Soc., 2004, 126, 11900.
- 12f Radovic, L. R.; Bockrath, B.. J. Am. Chem. Soc., 2005, 127, 5917.
- 13a Mizoguchi, K.; Takei, M.; Sakamoto, H.. Polyhetron, 2005, 24, 2173.
- 13b Fujiwara, M.; Kambe, T.; Oshima, K.. Synth. Met., 2005, 153, 489.
- 13c Mizoguchi, K.; Takei, M.; Machino, M.. J. Mag. Mag. Mater., 2004, 272-276, E215.
- 14a Shirakawa, N.; Tamura, M.. Polyhetron, 2005, 24, 2405.
- 14b Kambe, T.; Kajiyoshi, K.; Oshima, K.. Polyhetron, 2005, 24, 2468.
- 14c Jeong, J.; Briere, T. M.; Ohira, S.. Phys. B: Condens. Matter, 2003, 326, 563.
- 15Polycarbene
- 15a Tomioka, H.; Hattori, M.; Hirai, K.; Murata, S.. J. Am. Chem. Soc., 1996, 118, 8723.
- 15b Tomioka, H.; Hattori, M.; Hirai, K.; Sato, K.; Shiomi, D.; Takui, T.; Itoh, K.. J. Am. Chem.Soc., 1998, 120, 1106.
- 16a Goldschmidt, S.; Renn, K.. Ber. Dtsch. Chem. Ges., 1922, 55, 628.
- 16b Fujito, T.; Enoke, T.; Ohya-Nishiguchi, H.; Deguchi, Y.. Chem. Lett., 1972, 7, 557.
- 16c Duffy, W. Jr.; Strandberg, D. L.; Deck, J. F.. J. Chem. Phys., 1978, 68, 2097.
- 17a Ishimaru, Y.; Kitano, M.; Kumada, H.; Koga, N.; Iwamura, H.. Inorg. Chem., 1998, 37, 2273.
- 17b Barclay, T. M.; Hicks, R. G.; Lemaire, M. T.; Thompson, L. K.. Chem. Commun., 2000, 21, 2141.
- 18 Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.. J. Am. Chem. Soc., 1985, 107, 3902.
- 19 Steward, J. J. P.; Frank, J., United States Air Force Academy CO 80840, Seiler Research Laboratory, 1993.
- 20a Zhang, J. P.; Baumgarten, M.. Chem. Phys. Lett., 1997, 269, 187.
- 20b Zhang, J. P.; Lahti, P. M.; Wang, R. S.. Heteroatom Chem., 1998, 9, 161.
- 20c Zhang, J. P.; Zhang, H.; Wang, L. M.; Wang, R. S.. Sci. China, Ser. B, 2000, 43, 524.
- 21 Wang, L. M.; Zhang, J. P.; Wang, R. S.. Acta Chim. Sinica, 2003, 61, 808 (in Chinese).
- 22 Zhang, J. P.; Baumgarten, M.. Chem. Phys., 1997, 214, 291.
- 23 Heisenberg, W.. Z. Phys., 1928, 49, 619.
- 24a Borden, W. T.; Davidson, E. R.. Acc. Chem. Res., 1981, 14, 69.
- 24b Tyutyulkov, N.; Karabunarliev, S.; Ivanov, C.. Mol. Cryst. Liq. Cryst., 1989, 176, 139.
- 25a Lahti, P. M.; Rossi, A. R.; Berson, J. A.. J. Am. Chem. Soc., 1985, 107, 273.
- 25b Baumgarten, M.; Zhang, J. P.; Okada, K.; Tyutyulkov, N.. Mol. Cryst. Liq. Cryst., 1997, 305, 509.