Improving the Enzyme Catalytic Efficiency Using Ionic Liquids with Kosmotropic Anions
Hua Zhao
Project supported by the NIH-EARDA grant (No. 5G11HD32861-08) and the National Science Foundation MAGEC-STEM Summer Research Program (2005).
Search for more papers by this authorSophia Campbell
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorJonathan Solomon
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorZhi-Yan Song
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorOlarongbe Olubajo
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorHua Zhao
Project supported by the NIH-EARDA grant (No. 5G11HD32861-08) and the National Science Foundation MAGEC-STEM Summer Research Program (2005).
Search for more papers by this authorSophia Campbell
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorJonathan Solomon
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorZhi-Yan Song
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorOlarongbe Olubajo
Chemistry Program, Savannah State University, Savannah, Georgia 31404, USA
Search for more papers by this authorAbstract
The kosmotropicity of cations and anions in ionic liquids has a strong influence on the enzyme catalytic efficiency in aqueous environments. The kosmotropic anion CF3COO− seemed to activate the protease, and the chaotropic anions tended to destabilize the enzyme.
REFERENCES
- 1 Collins, K. D.. Proc. Natl. Acad. Sci. U.S.A., 1995, 92, 5553.
- 2 Collins, K. D.. Biophys. Chem., 1997, 72, 65.
- 3 Wiggins, P. M.. Physica A, 1997, 238, 113.
- 4 Zhao, H. J. Chem. Technol. Biotechnol. 2006, in press (DOI: 10. 1002/jctb. 1449).
- 5
Hofmeister, F..
Arch. Exp. Pathol. Pharmakol.,
1888,
24,
247.
10.1007/BF01918191 Google Scholar
- 6 Kunz, W.; Henle, J.; Ninham, B. W.. Curr. Opin. Colloid Interf. Sci., 2004, 9, 19.
- 7 Collins, K. D.. Methods, 2004, 34, 300.
- 8 Baldwin, R. L.. Biophys. J., 1996, 71, 2056.
- 9 Dandliker, W. B.; de Saussure, V. A., In Chemistry of Biosurfaces, Eds.: M. L. Hair, Marcel Dekker Inc, New York, 1971, p. 1.
- 10 von Hippel, P. H.; Wong, K.-Y.. J. Biol. Chem., 1965, 240, 3909.
- 11 von Hippel, P. H.; Schleich, T.. Accounts Chem. Res., 1969, 2, 257.
- 12 von Hippel, P. H.; Schleich, T., In Structure and Stability of Biological Macromolecules, Eds.: S. N. Timasheff; G. D. Fasman, Marcel Dekker, Inc., New York, 1969, p. 417.
- 13 Wiggins, P. M.. Cellular Mol. Biol., 2001, 47, 735.
- 14 Warren, J. C.; Cheatum, S. G.. Biochemistry, 1966, 5, 1702.
- 15 Warren, J. C.; Stowring, L.; Morales, M. F.. J. Biol. Chem., 1966, 241, 309.
- 16 Ru, M. T.; Hirokane, S. Y.; Lo, A. S.; Dordick, J. S.; Reimer, J. A.; Clark, D. S.. J. Am. Chem. Soc., 2000, 122, 1565.
- 17 Khmelnitsky, Y. L.; Welch, S. H.; Clark, D. S.; Dordick, J. S.. J. Am. Chem. Soc., 1994, 116, 2647.
- 18 Lindsay, J. P.; Clark, D. S.; Dordick, J. S.. Biotechnol. Bioeng., 2004, 85, 553.
- 19 Zhao, H.. J. Mol. Catal. B: Enzym., 2005, 37, 16.
- 20 van Rantwijk, F.; Madeira Lau, R.; Sheldon, R. A.. Trends Biotechnol., 2003, 21, 131.
- 21 Park, S.; Kazlauskas, R. J.. Curr. Opin. Biotechnol., 2003, 14, 432.
- 22 Zhao, H.; Malhotra, S. V.. Aldrichim. Acta, 2002, 35, 75.
- 23 Sheldon, R. A.; Lau, R. M.; Sorgedrager, M. J.; van Rantwijk, F.; Seddon, K. R.. Green Chem., 2002, 4, 147.
- 24 Welton, T.. Chem. Rev., 1999, 99, 2071.
- 25
Rogers, R. D.;
Seddon, K. R.;
Volkov, S., Green Industrial Applications of Ionic Liquids, Kluwer Academic Publishers, Dordrecht, 2002.
10.1007/978-94-010-0127-4 Google Scholar
- 26 Yang, Z.; Pan, W.. Enzyme Microb. Technol., 2005, 37, 19.
- 27 Kragl, U.; Eckstein, M.; Kaftzik, N.. Curr. Opin. Biotechnol., 2002, 13, 565.
- 28 Magnusson, D. K.; Bodley, J. W.; Evans, D. F.. J. Solution Chem., 1984, 13, 583.
- 29 Kaftzik, N.; Wasserscheid, P.; Kragl, U.. Org. Proc. Res. Dev., 2002, 6, 553.
- 30 Husum, T. L.; Jorgensen, C. T.; Christensen, M. W.; Kirk, O.. Biocatal. Biotransform., 2001, 19, 331.
- 31 Zhao, H.; Malhotra, S. V.. Biotechnol. Lett., 2002, 24, 1257.
- 32 Zhao, H.; Luo, R. G.; Malhotra, S. V.. Biotechnol. Prog., 2003, 19, 1016.
- 33 Hinckley, G.; Mozhaev, V. V.; Budde, C.; Khmelnitsky, Y. L.. Biotechnol. Lett., 2002, 24, 2083.
- 34 Basso, A.; Cantone, S.; Linda, P.; Ebert, C.. Green Chem., 2005, 7, 671.
- 35 Machado, M. F.; Saraiva, J. M.. Biotechnol. Lett., 2005, 27, 1233.
- 36 Zhao, H.; Olubajo, O.; Song, Z.; Sims, A. L.; Person, T. E.; Lawal, R. A.; Holley, L. A.. Bioorg. Chem., 2006, 34, 15.
- 37 Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W.. J. Am. Chem. Soc., 2002, 124, 14247.
- 38 Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D.. J. Am. Chem. Soc., 2002, 124, 4974.
- 39 Kaar, J. L.; Jesionowski, A. M.; Berberich, J. A.; Moulton, R.; Russell, A. J.. J. Am. Chem. Soc., 2003, 125, 4125.
- 40 Park, S.; Kazlauskas, R. J.. J. Org. Chem., 2001, 66, 8395.
- 41 Zhao, H.; Malhotra, S. V.; Luo, R. G.. Phys. Chem. Liq., 2003, 41, 487.
- 42 Swartling, D.; Ray, L.; Compton, S.; Ensor, D.. SAAS Bull.: Biochem. Biotechnol., 2000, 13, 1.
- 43 Wong, C. H.; Chen, S. T.; Hennen, W. J.; Bibbs, J. A.; Wang, Y. F.; Liu, J. L. C.; Pantoliano, M. W.; Whitlow, M.; Bryan, P. N.. J. Am. Chem. Soc., 1990, 112, 945.
- 44 Hartman, K. A.. J. Phys. Chem., 1966, 70, 270.
- 45 Engel, G.; Hertz, H. G.. Ber. Bunsen-Ges. Phys. Chem., 1968, 72, 808.
- 46 Surewicz, W. K.; Mantsch, H. H.; Chapman, D.. Biochemistry, 1993, 32, 389.
- 47 Dong, A.; Meyer, J. D.; Kendrick, B. S.; Manning, M. C.; Carpenter, J. F.. Arch. Biochem. Biophys., 1996, 334, 406.
- 48 Dong, A.; Huang, P.; Caughey, W. S.. Biochemistry, 1990, 29, 3303.
- 49 Dong, A.; Kendrick, B. S.; Kreilgard, L.; Matsuura, J.; Manning, M. C.; Carpenter, J. F.. Arch. Biochem. Biophys., 1997, 347, 213.
- 50 Dong, A.; Matsuura, J.; Allison, S. D.; Chrisman, E.; Manning, M. C.; Carpenter, J. F.. Biochemistry, 1996, 35, 1450.
- 51 Prestrelski, S. J.; Arakawa, T.; Carpenter, J. F.. Arch. Biochem. Biophys., 1993, 303, 465.
- 52 Melander, W.; Horvath, C.. Arch. Biochem. Biophys., 1977, 183, 200.
- 53 Nemethy, G.. Angew. Chem., Int. Ed. Engl., 1967, 6, 195.
- 54 Tanford, C.. Science, 1978, 200, 1012.
- 55 Widom, B.; Bhimalapuram, P.; Koga, K.. Phys. Chem. Chem. Phys., 2003, 5, 3085.
- 56 Yaminsky, V. V.; Vogler, E. A.. Curr. Opin. Colloid Interf. Sci., 2001, 6, 342.
- 57 Kay, R. L.; Zawoyski, V. C.; Evans, D. F.. J. Phys. Chem., 1966, 70, 2336.
- 58 Nightingale, E. R.. J. Phys. Chem., 1962, 66, 894.
- 59 Wen, W. Y., In Water and Aqueous Solutions, Ed.: R. A. Horne, Wiley Interscience, New York, 1972, pp. 613.
- 60 Darnell, A. J.; Greyson, J.. J. Phys. Chem., 1968, 72, 3021.
- 61 Miki, K.; Westh, P.; Nishikawa, K.; Koga, K.. J. Phys. Chem. B., 2005, 109, 9014.
- 62 Collins, K. D.; Washabaugh, M. W.. Quart. Rev. Biophys., 1985, 18, 323.
- 63 Jenkins, H. D. B.; Marcus, Y.. Chem. Rev., 1995, 95, 2695.