DFT study of dimethylaluminum azide clusters: Structures, energies, frequencies and thermodynamic properties
Qi-Ying Xia
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorCorresponding Author
He-Ming Xiao
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Fax: 4-86-25-84431622Search for more papers by this authorXue-Hai Ju
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorXue-Dong Gong
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorQi-Ying Xia
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorCorresponding Author
He-Ming Xiao
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Fax: 4-86-25-84431622Search for more papers by this authorXue-Hai Ju
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorXue-Dong Gong
Department of Chemistry, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorAbstract
DFT/B3LYP method with SDD basis set has been applied to the systems of (Me2AlN3). (n = 1–3). (Me2AlN3)2 was found to exhibit the planar Al2N2 ring structure. (Me2AlN3)3 involving a six-membered Al3N3 ring was found to exhibit two minima with very similar binding energies (-265.52 and −256.10 kJ*mol−1). Compared to the monomer, both the structural changes and charge & transfers for the clusters are large. Frequency calculations were carried out on each optimized structure and its JR spectra were discussed. Thermodynamic properties reveal that the dimer is the main component in the systems of the (Me2AlN3)n (n= 1–3).
References
- 1 Rawal, V. H.; Zhong, H. M. Tetrahedron Lett. 1994, 35, 4947.
- 2 Mereyala, H. B.; Frei, B. Helv. Chim. Acta 1986, 69, 415.
- 3 Chung, B. Y.; Park, Y. S.; Cho, I. S. Bull. Korean. Chem. Soc. 1988, 9, 269.
- 4 Boyd, D. C.; Haasch, R. T.; Mantell, D. R.; Schulze, R. K.; Evans, J. F.; Gladfelter, W. L. Chem Mater. 1989, 1, 119.
- 5 Schulze, R. K.; Boyd, D. C.; Evans, J. F.; Gladfelter, W. L. J. Vac. Sci. Technol. A 1990, 8, 2338.
- 6 Boo, J. H.; Lee, S. B.; Kim, Y. S.; Park, J. T.; Yu, K. S.; Kim, Y. Phys. Stat. Sol. A 1999, 176, 711.
- 7 Sheppard, L. M. Am. Ceram. Sac. Bull. 1990, 69, 1801.
- 8 Muller, J.; Dehnicke, K. J. Organomet. Chem 1968, 12, 37.
- 9 Dehnicke, K. J. Organomet. Chem. 1966, 6, 298.
- 10 Gao, Z. X.; Zhang, X. H.; Feng, L. C. Chin. J. Inorg. Chem. 2002, 18, 654 (in Chinese).
- 11 Zhang, X. H.; Gao, Z. X. Chin. J. Inorg. Chem. 2001, 17, 819 (in Chinese).
- 12 Fletcher, R.; Powell, M. J. D. Comput. J. 1963, 6, 163.
- 13 Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.
- 14 Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem 1996, 17, 49.
- 15 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petenson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresrnan, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gornperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A. 7; Gaussian Inc., Pittsburgh, PA, 1998.
- 16 Dehnicke, K.; Kruger, N. Z Anorg. Allg. Chem. 1978, 444, 71.
- 17 Steffek, C.; McMman, J.; Pleune, B.; Kouvetakis, J. Inorg. Chem. 2000, 39, 1615.
- 18 Xia, Q. Y.; Xiao, H. M.; Ju, X. H.; Gong, X. D. J. Phys. Chem A 2004, 108, 2780.
- 19 Xia, Q. Y.; Xiao, H. M.; Ju, X. H.; Gong, X. D. Int. J. Quantum Chem 2004, 100, 301.
- 20 Fischer, R. A.; Sussek, H.; Miehr, A.; Pritzkow, H.; Herdtweck, E. J. Organornet. Chem 1997, 548. 73.
- 21 McMurran, J.; Dai, D.; Balasubramanian, K.; Steffek, C.; Kouvetakis, J.; Hubbard, J. L. Inorg. Chem. 1998, 37, 6638.
- 22 McMurran, J.; Kouvetakis, J.; Smith, D. J. Appl. Phys. Len 1999, 74, 883.
- 23 McMurran, J.; Todd, M.; Kouvetakis, J.; Smith, D. J. Appl. Phys. Lett. 1996, 69, 203.
- 24 Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. E.; Hehre, W. J. Int. J. Quantum Chem. Quantum Chem. Symp. 1981, 15, 269.