P NMR studies on the ligand dissociation of trinuclear molybdenum cluster compounds
Abstract
A series of carboxylate-substituted trinuclear molybdenum cluster compounds formulated as Mo3S4(DTP)3(RCO2)(L), where R = H, CH3, C2H5, CH2Cl, CCl3, R1C6H4(R1 is the group on the benzene ring of aromatic carboxylate), L = pyridine, CH3CN, DMF, have been synthesized by the ligand substitution reaction. The dissociation of the loosely-coordinated ligand L from the cluster core was studied by 31P NMR. The dissociation process of L is related to the solvent, temperature, and acidity of carboxylate groups, so as to affect the solution structure and reactive properties of the cluster. The long-distance interaction between ligands RCO2 and L is transported by Mo3S4 core.