Inorganic-Organic Hybrid 18-Molybdodiphosphate Nanoparticles Bulk-modified Carbon Paste Electrode and Its Electrocatalysis
Xiu-Li Wang
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorZhen-Hui Kang
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorEn-Bo Wang
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorChang-Wen Hu
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorXiu-Li Wang
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorZhen-Hui Kang
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorEn-Bo Wang
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorChang-Wen Hu
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorAbstract
A kind of inorganic-organic hybrid 18-molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18Q62·4H2O) was firstly used as a bulk-modifier to fabricate a three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square-wave voltammetry. The hybrid 18-molybdodiphosphate nanoparticles bulk-modified CPE (MNP-CPE) displayed a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP-CPE over the traditional polyoxometalates-modified electrodes are their excellent reproducibility of surface-renewal and high stability owing to the insolubility of the hybrid 18-molybdodiphosphate nanoparticles.
References
- 1 Keita, B.; Belhouari, A.; Nadjo, L.; Content, R. J. Electroanal. Chem. 1995, 381, 243.
- 2 Xi, X. D.; Wang, B.; Liu, B. F.; Dong, S. J. Electrochim. Acta 1995, 40, 1025.
- 3 Toth, J. E.; Anson, F. C. J. Am. Chem. Soc. 1989, 111, 2444.
- 4 Bidan, C.; Genies, E. M.; Lapkowski, M. J. Electroanal. Chem. Interfaced Electrochem. 1988, 251, 791.
- 5 Sadadane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219 and references therein.
- 6 Keita, B.; Nadjo, L.; Haeusslaer, J. P. J. Electroanal. Chem. 1988, 243, 481.
- 7 Wang, B. X.; Dong, S. J. Electrochim. Acta 1992, 37, 1859.
- 8 Bidan, G.; Genies, E. M.; Lapkowski, M. J. Chem. Soc., Chem. Commun. 1988, 533.
- 9 Kuhn, A.; Mano, N.; Vidal, C. J. Electroanal. Chem. 1999, 462, 187.
- 10 Cheng, L.; Niu, L.; Gong, J.; Dong, S. J. Chem. Mater. 1999, 11, 1465.
- 11 Kuhn, A.; Anson, F. C. Langmuir 1996, 12, 5481.
- 12 Song, W. B.; Liu, Y.; Lu, N.; Xu, H. D.; Sun, C. Q. Electrochim. Acta 2000, 45, 1639.
- 13 Wang, P.; Wang, X. P.; Zhu, G. Y. New J. Chem. 2000, 24, 481.
- 14 Wang, P.; Yuan, Y.; Han, Z. B.; Zhu, G. Y. J. Mater. Chem. 2001, 11, 549.
- 15 Wang, X. L.; Wang, E. B.; Hu, C. W. Chem. Lett. 2001, 1030.
- 16 Wang, X. L.; Wang, E. B.; Lan, Y.; Hu, C. W. Electroanalysis in press.
- 17 Kalcber, K. Electroanalysis 1990, 2, 419.
- 18 Wang, J.; Deshmukh, B. K.; Bonakdar, M. J. Electroanal. Chem. 1985, 194, 339.
- 19 Kissinger, P. T.; Hememan, W. R. Laboratory Technique in Electroanalytical Chemistry, Dekker, New York, 1984, pp. 85–90.
- 20 Tachikawa, H.; Faulkner, L. R. J. Am. Chem. Soc. 1978, 100, 4379.
- 21 Buttry, D. A.; Anson, F. C. J. Am. Chem. Soc. 1984, 106, 59.
- 22 Lieber, C. M.; Lewis, N. S. J. Am. Chem. Soc. 1984, 106, 5033.
- 23 Bonakdar, M.; Mottola, H. A. Anal. Chem. Acta 1989, 224, 305.
- 24 Boyer, A.; Kalcher, K.; Pietsch, R. Electroanalysis 1990, 2, 155.
- 25 Wu, H. J. Biol. Chem. 1920, 43, 189.
- 26 You, W. S.; Wang, Y. B.; Wang, E. B.; Xu, L.; Hu, C. W.; Jin, X.; Li, F. Chem. J. Chin. Univ. 2000, 21, 1636 (in Chinese).
- 27 Pope, M. T.; Papaconstantinou, E. Inorg. Chem. 1967, 6, 1147.
- 28 Papaconstantinou, E.; Pope, M. T. Inorg. Chem. 1967, 6, 1152.
- 29 Brown, A. P.; Anson, F. C. Anal. Chem. 1977, 49, 1589.
- 30 Wang, J. Analytical Electrochemistry, VCH, New York, 1994, p. 124.
- 31 Brett, C. M. A.; Brett, A. M. O. Electrochemistry Principles, Methods and Applications, Oxford University Press, Oxford, 1993, p. 78.
- 32 Xi, X. D.; Dong, S. J. J. Mol. Catal. A: Chem. 1996, 114, 257.
- 33 Liu, S. Q.; Tang, Z. Y.; Bo, A. L.; Wang, E. K.; Dong, S. J. J. Electroanal. Chem. 1998, 458, 87.
- 34 Kulesza, P. J.; Faulkner, L. R. J. Am. Chem. Soc. 1988, 110, 4905.
- 35 Wang, B. X.; Dong, S. J. J. Electroanal. Chem. 1994, 379, 207.
- 36 Wang, P.; Wang, X. P.; Bi, L. H.; Zhu, G. Y. J. Electroanal. Chem. 2000, 495, 51.
- 37 Papadakis, A.; Souliotis, A.; Papaconstantinou, E. J. Electroanal. Chem. 1997, 435, 17.
- 38 Keita, B.; Essaadi, K.; Nadjo, L. J. Electroanal. Chem. 1989, 259, 127.