Simulation of Azelaic Acid Crystallization Process Based on MATLAB and Aspen Plus
Zhiyuan Zhao
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorCorresponding Author
Weiyi Su
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
E-mail: [email protected]
Search for more papers by this authorMengyao Wang
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorWenxiu Yang
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorQi Hao
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorXiong Yu
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorHonghai Wang
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorZhiyuan Zhao
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorCorresponding Author
Weiyi Su
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
E-mail: [email protected]
Search for more papers by this authorMengyao Wang
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorWenxiu Yang
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorQi Hao
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorXiong Yu
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorHonghai Wang
School of Chemical Engineering, Hebei University of Technology, No.8 Guangrong Road, Tianjin, 300130 China
National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, No.8 Guangrong Road, Tianjin, 300130 China
Search for more papers by this authorAbstract
This study develops a coupled model using MATLAB and Aspen Plus to simulate the cooling-antisolvent crystallization of azelaic acid. The solubility was measured using the gravimetric method, and a crystallization kinetics model was built with the population balance equation. Kinetic parameters were obtained through experiments and used as inputs for the model. A key feature was the segmental addition of antisolvent in Aspen Plus. To address Aspen Plus limitations in dynamic solubility changes, a MATLAB-based solubility calculator was developed, feeding solubility data back to Aspen Plus. The simulation results were validated by comparing crystal size distribution data, confirming the model's accuracy. This approach provides a reliable tool for optimizing antisolvent crystallization processes.
References
- 1L. Xiang, M. Fu, T. Wang, D. Wang, H. Xv, W. Miao, T. Le, L. Zhang, J. Hu, Ultrason. Sonochem. 2024, 111, 107062. DOI: https://doi.org/10.1016/j.ultsonch.2024.107062
- 2X. Zhang, E. Asselin, Z. Li, ACS Sustain Chem. Eng. 2020, 9 (1), 398–410. DOI: https://doi.org/10.1021/acssuschemeng.0c07467
- 3W. Chen, T. Yao, J. Liu, M. Li, S. Jia, Z. Gao, J. Gong, Sep. Purif. Technol. 2025, 354, 128778. DOI: https://doi.org/10.1016/j.seppur.2024.128778
- 4Z. Wang, S. Rao, B. Li, J. Wang, Chem. Eng. Technol. 2024, 47 (9), e202200220. DOI: https://doi.org/10.1002/ceat.202200220
- 5D. C. D. Caldeira, C. M. Silva, F. Á. Rodrigues, A. J. V. Zanuncio, Water Sci Technol 2023, 88 (3), 751–762. DOI: https://doi.org/10.2166/wst.2023.242
- 6T. K. Kanatlı, N. Ayas, Int. J. Hydrogen Energy 2021, 46 (57), 29076–29087. DOI: https://doi.org/10.1016/j.ijhydene.2020.12.195
- 7W. Li, C. Wang, Y. Song, Renewable Energy 2024, 222, 119995. DOI: https://doi.org/10.1016/j.renene.2024.119995
- 8S. Wang, Y. Song, Y. Zhang, C.-C. Chen, Ind. Eng. Chem. Res. 2022, 61 (42), 15649–15660. DOI: https://doi.org/10.1021/acs.iecr.2c01881
- 9D. Bravo, F. J. Álvarez-Hornos, J. M. Penya-roja, P. San-Valero, C. Gabaldón, J. Environ. Manage. 2018, 213, 530–540. DOI: https://doi.org/10.1016/j.jenvman.2018.02.040
- 10S. Y. Lee, D. R. Yang, J. W. Chang, J. Ind. Eng. Chem. 2020, 92, 191–199. DOI: https://doi.org/10.1016/j.jiec.2020.09.004
- 11D. von Eiff, P. W. Wong, Y. Gao, S. Jeong, A. K. An, Desalination 2021, 503, 114925. DOI: https://doi.org/10.1016/j.desal.2020.114925
10.1016/j.desal.2020.114925 Google Scholar
- 12J. V. Petrauskas, S. H. B. Faria, W. M. Moreira, L. Bonfim-Rocha, Processes 2024, 12 (8), 1687. DOI: https://doi.org/10.3390/pr12081687
- 13D. Wang, Z. Li, Ind. Eng. Chem. Res. 2012, 51 (50), 16299–16310. DOI: https://doi.org/10.1021/ie302271u
- 14W. L. Luyben, J. Process Control 2015, 33, 49–59. DOI: https://doi.org/10.1016/j.jprocont.2015.06.002
- 15P. Santos Bartolome, T. Van Gerven, Comput. Chem. Eng. 2022, 162, 107785. DOI: https://doi.org/10.1016/j.compchemeng.2022.107785
- 16H. Aammer, Z. M. Shakor, F. Al-Sheikh, S. A. Al-Naimi, W. A. Anderson, Combust. Sci. Technol. 2023, 195 (11), 2634–2654. DOI: https://doi.org/10.1080/00102202.2022.2029854
- 17C. Song, J. Leng, L. Dong, Z. Feng, Sep. Purif. Technol. 2024, 360, 130992. DOI: https://doi.org/10.1016/j.seppur.2024.130992
- 18V. Marcantonio, A. Monforti Ferrario, A. Di Carlo, L. Del Zotto, D. Monarca, E. Bocci, Computation 2020, 8 (4), 86. DOI: https://doi.org/10.3390/computation8040086
- 19M. Yamanee-Nolin, N. Andersson, B. Nilsson, M. Max-Hansen, O. Pajalic, Chem. Eng. Res. Des. 2020, 155, 12–17. DOI: https://doi.org/10.1016/j.cherd.2019.12.015
- 20L. G. Hernández-Pérez, E. Sánchez-Tuirán, K. A. Ojeda, M. M. El-Halwagi, J. M. Ponce-Ortega, ACS Sustain Chem. Eng. 2019, 7 (9), 8490–8498. DOI: https://doi.org/10.1021/acssuschemeng.9b00274
- 21I. Santos, P. Dam, P. Arantes, A. Raposo, L. Soares, Simulation Training in Oil Platforms, IEEE, Piscataway 2016. DOI: https://doi.org/10.1109/SVR.2016.18
10.1109/SVR.2016.18 Google Scholar
- 22C. Moler, J. Little, Proc ACM Program Lang 2020, 4, 1–67. DOI: https://doi.org/10.1145/3386331
10.1145/3386331 Google Scholar
- 23A. R. Jalalvand, M. Roushani, H. C. Goicoechea, D. N. Rutledge, H.-W. Gu, Talanta 2019, 194, 205–225. DOI: https://doi.org/10.1016/j.talanta.2018.10.041
- 24W. Su, P. Guo, Y. Zhang, X. Liu, Q. Hao, H. Wang, C. Li, J. Mol. Liq. 2020, 317, 114181. DOI: https://doi.org/10.1016/j.molliq.2020.114181
- 25E. Brenna, D. Colombo, G. Di Lecce, F. G. Gatti, M. C. Ghezzi, F. Tentori, D. Tessaro, M. Viola, Molecules 2020, 25 (8), 1882. DOI: https://doi.org/10.3390/molecules25081882
- 26C. M. Jones, AlChE J. 2004, 48 (7), 1448–1456. DOI: https://doi.org/10.1002/aic.690480709
10.1002/aic.690480709 Google Scholar
- 27M. Tomellini, M. De Angelis, J. Cryst. Growth 2024, 650, 127970. DOI: https://doi.org/10.1016/j.jcrysgro.2024.127970
- 28M. R. Gigliobianco, C. Casadidio, R. Censi, P. Di Martino, Pharmaceutics 2018, 10 (3), 134. DOI: https://doi.org/10.3390/pharmaceutics10030134
- 29G. Hou, G. Power, M. Barrett, B. Glennon, G. Morris, Y. Zhao, Cryst. Growth Des. 2014, 14 (4), 1782–1793. DOI: https://doi.org/10.1021/cg401904a
- 30K. Lucas, S. Verlag, B. Heidelberg, AlChE J. 1994, 40 (6), 1087–1088.
- 31A. Apelblat, E. Manzurola, J Chem Thermodyn 1998, 31 (1), 85–91. DOI: https://doi.org/10.1006/jcht.1998.0424
10.1006/jcht.1998.0424 Google Scholar
- 32L. J. Shaikh, A. H. Bari, V. V. Ranade, A. B. Pandit, Ind. Eng. Chem. Res. 2015, 54 (42), 10539–10548. DOI: https://doi.org/10.1021/acs.iecr.5b01421