Perfluoro(butylcyclohexane)–Cis-Perfluorodecalin Mixture Separation by Heteroazeotropic Distillation
Corresponding Author
Dr. Egor V. Lupachev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
E-mail: [email protected]
Search for more papers by this authorAlexey V. Kisel
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorSergey. Ya. Kvashnin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorDr. Viktor I. Privalov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Chemistry of Coordination Polynuclear Compounds, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorTatiana D. Ksenofontova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, The Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorDr. Andrei V. Polkovnichenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorCorresponding Author
Dr. Egor V. Lupachev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
E-mail: [email protected]
Search for more papers by this authorAlexey V. Kisel
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorSergey. Ya. Kvashnin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorDr. Viktor I. Privalov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Chemistry of Coordination Polynuclear Compounds, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorTatiana D. Ksenofontova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, The Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorDr. Andrei V. Polkovnichenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Laboratory of Theoretical Foundations of Chemical Technology, Leninsky prosp., 31, Moscow, 119071 Russia
Search for more papers by this authorAbstract
This work investigates the process of distillation purification of perfluoro(butylcyclohexane) (BCH) and concentration of perfluorodecalin (PFD) from industrial samples of BCH–PFD mixtures. According to experimental data, the main difficulty is the separation of BCH from the cis-isomer of PFD, for which distillation is ineffective. To intensify this process, a heteroazeotropic distillation method in the presence of water was proposed and implemented on a pilot-scale distillation column. This approach allows BCH to be purified from PFD up to more than 0.99 mol.fr. The advantage of the proposed method is the use of a safe separating agent—water, which is especially important due to the widespread use of BCH and PFD in medicine. Based on experimental data, the work also determined the characteristics of heteroazeotropes in the systems BCH–water, cis-PFD–water, and trans-PFD–water and relative volatility between BCH and cis-PFD in the presence of water.
Supporting Information
Filename | Description |
---|---|
ceat70068-sup-0001-SuppMat.docx506.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Sandford, Tetrahedron 2003, 59 (4), 437–454. DOI: https://doi.org/10.1016/S0040-4020(02)01568-5
- 2Z. Fang, G. Shen, Y. Fang, B. Cui, Patent CN 111484389A, 2020.
- 3G. Wen-Zheng, C. Wen-Juan, H. Yu-Qing, H. Wei-Yuan, Acta Chim. Sin. 1987, 45 (7), 720–723.
- 4W. Lin, R. Lagow, J. Fluorine Chem. 1990, 50 (3), 345–358. DOI: https://doi.org/10.1016/S0022-1139(00)85000-9
- 5T. Hirasawa, H. Matsuhisa, JP Patent 2003300942A, 2002.
- 6A. Sievert, R. Mallikarjuna, US Patent 6147267A, 2000.
- 7N. Okada, M. Yoshinaga, Y. Tanaka, JP Patent 3402736B2, 2003.
- 8H. Meinert, DE Patent 4205341A1, 1993.
- 9G. Kaurova, V. Matalin, D. Mukhortov, D. Pashkevich, M. Kambour, O. Lantratova, V. Petrov, P. Kambur, RU Patent 2412928C2, 2011.
- 10T. Bispen, T. Mikhailova, D. Moldavskij, G. Furin, V. Shkultetskaya, Zhurnal Prikl. Him. 1996, 69 (1), 112–119.
- 11T. Bispen, A. Kochnev, D. Moldavskij, A. Sergeeva, RU Patent 2544849C1, 2015.
- 12L. Gervits, in Proc. of the Conf. on Fluorine in Medicine in the 21st Century, paper No. 22, Rapra Technology Ltd, Manchester 1994.
- 13S. Gorelenko, Fluorine Notes 2016, 5 (108), 3–4. DOI: https://doi.org/10.17677/FN20714807.2016.05.02
10.17677/FN20714807.2016.05.02 Google Scholar
- 14R. Tuffin, O. Paari, P. Baker, C. Brown, I. Sage, EP Patent 3334801B1, 2020.
- 15B. Chung, Y. Lim, WO Patent 2009128610A2, 2009.
- 16A. Grossman, R. Kiral, G. Klein, C. Stern, G. Clauson, WO Patent 2012112796A2, 2012.
- 17Y. Sasaki, Y. Hanawas, S. Nadahara, D. Ueda, H. Kitagawa, K. Okumura, US Patent 10153181B2, 2018.
- 18E. Valverde, EP Patent 3389603B1, 2020.
- 19M. Okutani, H. Takahashi, M. Otsuji, H. Abe, C. Maeda,, H. Nakai, Y. Sasaki, US Patent 11302525B2, 2022.
- 20Y. Sasaki, Y. Hanawa, JP Patent 6780998B2, 2020.
- 21A. Kisel, A. Polkovnichenko, E. Lupachev, N. Kuritsyn, S. Kvashnin, N. Kulov, Eng. Proc. 2023, 37 (1), 85. DOI: https://doi.org/10.3390/ECP2023-14640
10.3390/ECP2023?14640 Google Scholar
- 22A. Polkovnichenko, N. Kulov, A. Kisel’, N. Kuritsyn, S. Kvashnin, E. Lunachev, Theor. Found. Chem. Eng. 2023, 57 (6), 1268–1275. DOI: https://doi.org/10.1134/S0040579523060179
- 23A. Polkovnichenko, E. Lupachev, A. Kisel’, S. Kvashnin, N. Kulov, Eng. Proc. 2023, 37 (1), 72. DOI: https://doi.org/10.3390/ECP2023-14621
10.3390/ECP2023?14621 Google Scholar
- 24A. Polkovnichenko, E. Lupachev, A. Kisel’, S. Kvashnin, N. Kulov, Theor. Found. Chem. Eng. 2023 57 (5), 779–790. DOI: https://doi.org/10.1134/S0040579523050500
- 25M. Yoshinaga, N. Okada, M. Shirai, JP Patent H10101595A, 1998.
- 26N. Okada, Y. Hirai, M. Yoshinaga, M. Shirai, JP Patent H07278022A, 1995.
- 27M. Yoshinaga, M. Shiral, Patent JP H09291047A, 1997.
- 28M. Yoshinaga, Y. Tanaka, JP Patent H11130703A, 1999.
- 29M. Sander, W. Blöchl, Chem. Ing. Tech. 1965, 37 (1), 7–13. DOI: https://doi.org/10.1002/cite.330370103
- 30A. V. Polkovnichenko, E. V. Lupachev, A. V. Kisel’, S Y. Kvashnin, N. N. Kulov, J. Chem. Eng. Data 2023, 68 (3), 499–517. DOI: https://doi.org/10.1021/acs.jced.2c00588
- 31E. Lupachev, A. Voshkin, A. Kisel’, N. Kulov, Y. Zakhodyaeva, A. Polkovnichenko, Processes 2023, 11 (11), 3208. DOI: https://doi.org/10.3390/PR11113208/S1
- 32 Special Distillation Processes, 2nd ed. (Eds: Z. Lei, C. Dai, B. Chen, Z. Ding), Elsevier Science, Amsterdam 2021.
- 33Z. Yang Kong, H. Yeh Lee, J. Sunarso, Sep. Purif. Technol. 2022, 284, 120292. DOI: https://doi.org/10.1016/J.SEPPUR.2021.120292
- 34A. Frolkova, A. Frolkova, I. Gaganov, Chem. Eng. Technol. 2021, 44 (8), 1397–1402. DOI: https://doi.org/10.1002/CEAT.202100024
- 35I. Gaganov, S. Belim, A. Frolkova, A. Frolkova, Theor. Found. Chem. Eng. 2023, 57 (1), 35–44. DOI: https://doi.org/10.1134/S0040579523010049
- 36 Azeotropic and Extractive Rectification, 2nd ed. (Ed: V. Kogan), Khimiya Publishing House, Leningrad 1971.
- 37L. Wang, A. Yang, C. Chang, T. Qiu, C. Yang, Z. Lei, W. Mo, H. Tao, B. Wang, X. Hu, W. Shen, Sep. Purif. Technol. 2025, 364 (1), 132204. DOI: https://doi.org/10.1016/j.seppur.2025.132204
- 38A. V. Frolkova, A. K. Frolkova, I. S. Gaganov, ChemEngineering 2022, 6 (5), 83. DOI: https://doi.org/10.3390/chemengineering6050083
- 39B. Nemeth, L. Hegely, P. Lang, Chem. Eng. Res. Des. 2019, 146, 486–498. DOI: https://doi.org/10.1016/j.cherd.2019.04.033
- 40L. Wang, B. Yuan, A. Yang, C. Chang, S. Wei, W. Shen, Ind. Eng. Chem. Res. 2024, 63 (42), 18075–18085. DOI: https://doi.org/10.1021/acs.iecr.3c04365
- 41A. Yang, Y. Su, T. Shi, J. Ren, W. Shen, T. Zhou, Front. Chem. Sci. Eng. 2022, 16, 303–315. DOI: https://doi.org/10.1007/s11705-021-2044-z
- 42V. Gerbaud, I. Rodriguez-Donis, L. Hegely, P. Lang, F. Denes, X. You, Chem. Eng. Res. Des. 2019, 141, 229–271. DOI: https://doi.org/10.1016/j.cherd.2018.09.020
- 43T. Chelyuskina, F. Bedretdinov, Theor. Found. Chem. Eng. 2016, 50, 697–704. DOI: https://doi.org/10.1134/S0040579516050274
- 44P. Quelenn, C. Botterbusch, T. Snyder, F. Cornat, F. Condemi, P. Le Blanc, A. Olivé, FR PatentWO2023209547A1, 2023.
- 45W. Luyben, Ind. Eng. Chem. Res. 2012, 51 (33), 10881–10886. DOI: https://doi.org/10.1021/ie3002414
- 46W. Luyben, Ind. Eng. Chem. Res. 2008, 47 (8), 2696–2707. DOI: https://doi.org/10.1021/ie701695u
- 47J. W. Mtogo, A. J. Toth, D. Fozer, P. Mizsey, A. Szanyi, ACS Omega 2023, 8 (1), 726–736. DOI: https://doi.org/10.1021/acsomega.2c05959
- 48Y. Pisarenko, L. Serafimov, N. Kulov, Theor. Found. Chem. Eng. 2009, 43 (5), 591–605. DOI: https://doi.org/10.1134/S0040579509050029
- 49A. Yang, Y. Su, S. Sun, W. Shen, M. Bai, J. Ren, J. Clean. Prod. 2021, 332, 130116. DOI: https://doi.org/10.1016/j.jclepro.2021.130116
10.1016/j.jclepro.2021.130116 Google Scholar
- 50Z. Y. Kong, A. Yang, C.-C. Tsai, V. S. K. Adi, A. Saptoro, J. Sunarso, Ind. Eng. Chem. Res. 2023, 62 (27), 10601–10610. DOI: https://doi.org/10.1021/acs.iecr.3c01532
- 51A. Timoshenko, E. Anokhina, D. Buev, Theor. Found. Chem. Eng. 2004, 38 (2), 160–163. DOI: https://doi.org/10.1023/B:TFCE.0000022484.73097.1f
- 52A. Timoshenko, L. Serafimov, Theor. Found. Chem. Eng. 1997, 31 (5), 480–486.
- 53T. Shi, W. Chun, A. Yang, Y. Su, S. Jin, J. Ren, W. Shen, Chem. Eng. Sci. 2020, 215. DOI: https://doi.org/10.1016/j.ces.2019.115373
- 54Z. Kong, H. Lee, J. Sunarso, Sep. Purif. Technol. 2022, 284, 120292. DOI: https://doi.org/10.1016/j.seppur.2021.120292
- 55C. Cortel, K. Flordeliza, S. Galvez, M. Magalong, T. Mendoza, R. Rubi, Eng. Proc. 2024, 67, 56. DOI: https://doi.org/10.3390/engproc2024067056
10.3390/engproc2024067056 Google Scholar
- 56F. Bedretdinov, T. Chelyuskina, Fine Chem. Technol. 2018, 13 (1), 45–54. DOI: https://doi.org/10.32362/2410-6593-2018-13-1-45-54
- 57E. Lupachev, A. Polkovnichenko, A. Kisel’, A. Voshkin, N. Kulov, Theor. Found. Chem. Eng. 2022, 56 (5), 627–637. DOI: https://doi.org/10.1134/S004057952205027X
- 58N. Kulov, A. Polkovnichenko, E. Lupachev, A. Kisel’, A. Voshkin, E. Magomedbekov, Theor. Found. Chem. Eng. 2021, 55 (2), 207–214. DOI: https://doi.org/10.1134/S0040579521020044
- 59L. Hegely, P. Lang, Comput. Aided Chem. Eng. 2018, 43, 1505–1511. DOI: https://doi.org/10.1016/B978-0-444-64235-6.50262-X
- 60M. I. Parma-García, J. A. Díaz-López, A. Nieto-Márquez, Chem. Eng. Process. – Process Intensif. 2022, 171, 108761. DOI: https://doi.org/10.1016/J.CEP.2021.108761
- 61L. Hegely, P. Lang, Front. Chem. Sci. Eng. 2018, 12 (4), 643–659. DOI: https://doi.org/10.1007/S11705-018-1760-5/METRICS