Resolution of Double Salts via Crystallization-Induced Diastereomeric Transformation (CIDT)
Corresponding Author
Melba Simon
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
E-mail: [email protected]
Search for more papers by this authorSophie Shortt
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorConor Burke
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorEóin Bourke
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorAnita Umerska
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorAngel Jacob
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorSharon Davin
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorBrian Glennon
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorCorresponding Author
Melba Simon
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
E-mail: [email protected]
Search for more papers by this authorSophie Shortt
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorConor Burke
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorEóin Bourke
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorAnita Umerska
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorAngel Jacob
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorSharon Davin
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorBrian Glennon
APC Ltd., Building 11, Cherrywood Business Park, Dublin, D18 DH50 Ireland
Search for more papers by this authorAbstract
The efficient enantioseparation of racemic compounds remains a critical challenge in pharmaceutical manufacturing. This investigation examines the crystallization-induced diastereomeric transformation (CIDT) of (S)-ketoprofen-(S)-phenylethylamine salts as a strategy for obtaining high-purity diastereomeric salts. Solubility phase diagrams were constructed for diastereomeric salts. A double salt system was identified, and a solvent system of 2-propanol and heptane (50:50 wt.%) was optimal for crystallization. Among the seven base catalysts screened, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) was found to be the most effective. Optimization studies demonstrated that 5–10 mol% DBU provides the highest purity (98.8 %) with 26.2 % yield. These results provide insights into the dual role of DBU as a catalyst (forming mixed salts) and cosolvent, influencing yield. The findings highlight CIDT as a robust method for the enantioseparation of diastereomeric salts in pharmaceutical applications.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ceat70056-sup-0001-SuppMat.docx163.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P.-H. Chuong, L. A. Nguyen, H. He, Int. J. Biomed. Sci. 2006, 2 (2), 85–100. DOI: https://doi.org/10.59566/ijbs.2006.2085
- 2N. Senkuttuvan, B. Komarasamy, R. Krishnamoorthy, S. Sarkar, S. Dhanasekaran, P. Anaikutti, RSC Adv. 2024, 14 (45), 33429–33448. DOI: https://doi.org/10.1039/d4ra05694a
- 3S. H. Wilen, A. Collet, J. Jacques, Tetrahedron 1977, 33 (21), 2725–2736. DOI: https://doi.org/10.1016/0040-4020(77)80264-0
- 4S. W. Smith, Toxicol. Sci. 2009, 110 (1), 4–30. DOI: https://doi.org/10.1093/toxsci/kfp097
- 5M. Eichelbaum, in Toxicology in Transition: Proceedings of the 1994 EUROTOX Congress Meeting (Eds: G. H. Degen, J. P. Seiler, P. Bentley), Springer Berlin Heidelberg, Berlin, Heidelberg 1995.
- 6M. H. Bosits, L. Bereczki, P. Bombicz, Z. Szalay, H. Pataki, Á. Demeter, CrystEngComm 2023, 25 (4), 641–652. DOI: https://doi.org/10.1039/D2CE01490D
- 7M. Simon, B. Wood, S. Ferguson, B. Glennon, R. C. Jones, AlChE J. 2019, 65 (2), 604–616. DOI: https://doi.org/10.1002/aic.16466
- 8Á. Orosz, M. H. Bosits, É. Pusztai, H. Pataki, Z. Szalay, Á. Demeter, B. Szilágyi, Chem. Eng. J. 2023, 473, 145257. DOI: https://doi.org/10.1016/j.cej.2023.145257
- 9N. Uemura, Y. Yoshida, T. Mino, M. Sakamoto, Tetrahedron 2020, 76 (20), 131166. DOI: https://doi.org/10.1016/j.tet.2020.131166
- 10A. Kolarovič, P. Jakubec, Adv. Synth. Catal. 2021, 363 (17), 4110–4158. DOI: https://doi.org/10.1002/adsc.202100473
- 11T. Lerdwiriyanupap, R. Cedeno, P. Nalaoh, S. Bureekaew, V. Promarak, A. E. Flood, Cryst. Growth Des. 2023, 23 (3), 2001–2010. DOI: https://doi.org/10.1021/acs.cgd.2c01551
- 12A. J. Kukor, N. Depner, I. Cai, J. L. Tucker, J. C. Culhane, J. E. Hein, Chem. Sci. 2022, 13 (36), 10765–10772. DOI: https://doi.org/10.1039/D2SC01825J
- 13V. G. Lisnyak, Y. Tan, A. Ramirez, S. R. Wisniewski, A. A. Sarjeant, J. Org. Chem. 2023, 88 (17), 12493–12501. DOI: https://doi.org/10.1021/acs.joc.3c01228
- 14S. Hirasawa, T. Kurashima, T. Hasegawa, K. Souma, N. Kanomata, Chem. Lett. 2022, 51 (10), 985–988. DOI: https://doi.org/10.1246/cl.220299
- 15F. Jamali, D. R. Brocks, Clin. Pharmacokinet. 1990, 19 (3), 197–217. DOI: https://doi.org/10.2165/00003088-199019030-00004
- 16A. L. Ong, A. H. Kamaruddin, S. Bhatia, Process Biochem. 2005, 40 (11), 3526–3535. DOI: https://doi.org/10.1016/j.procbio.2005.03.054
- 17R. Bertini, G. Caselli, Analgesia 1999, 4 (2), 181–186. DOI: https://doi.org/10.3727/107156999819565829
- 18M. H. Ossipov, T. P. Jerussi, K. Ren, H. Sun, F. Porreca, Pain 2000, 87 (2), 193–199. DOI: https://doi.org/10.1016/S0304-3959(00)00280-3
- 19Y. H. Lu, C. B. Ching, Chirality 2004, 16 (8), 541–548. DOI: https://doi.org/10.1002/chir.20075
- 20R. Mullangi, M. Yao, N. R. Srinivas, Biomed. Chromatogr. 2003, 17 (7), 423–434. DOI: https://doi.org/10.1002/bmc.277
- 21H. Lukas, O. Schuster, G. Rau, Process to Separate Mixtures of Enantiomeric Arylpropionic Acids, US4983765A 1991.
- 22C. H. Senanayake, D. Krishnamurthy, I. Gallou, in Handbook of Chiral Chemicals (Ed: D. Ager), 2nd ed., CRC Press, Boca Raton 2005.
- 23P. Rossi, J. Ceccarelli, S. Milazzo, P. Paoli, J. Morais Missina, S. Ciattini, A. Ienco, G. Tuci, M. Valleri, M. P. Giovannoni, G. Guerrini, L. Conti, Cryst. Growth Des. 2021, 21 (12), 6947–6960. DOI: https://doi.org/10.1021/acs.cgd.1c00886
- 24P. Rossi, J. Ceccarelli, S. Milazzo, P. Paoli, J. Morais Missina, S. Ciattini, A. Ienco, G. Tuci, M. Valleri, M. P. Giovannoni, G. Guerrini, L. Conti, Crystal Growth and Design 2021, 21, 6947. DOI: https://doi.org/10.1021/acs.cgd.1c00886
- 25J. W. Mullin, Crystallization, Butterworth-Heinemann, Oxford 2001.
- 26D. Kozma, CRC Handbook of Optical Resolutions via Diastereomeric Salt Formation, CRC Press, Boca Raton 2001.
10.1201/9781420042603 Google Scholar
- 27H. Lorenz, A. Seidel-Morgenstern, Thermochim. Acta 2002, 382 (1–2), 129–142. DOI: https://doi.org/10.1016/S0040-6031(01)00746-8
- 28Venkata S. Sistla, J. Von Langermann, H. Lorenz, A. Seidel-Morgenstern, Cryst. Growth Des. 2011, 11 (9), 3761–3768. DOI: https://doi.org/10.1021/cg2001128
- 29Y. Zhang, A. Ray, S. Rohani, Chem. Eng. Sci. 2009, 64 (2), 192–197. DOI: https://doi.org/10.1016/j.ces.2008.10.010
- 30M. Siniti, S. Jabrane, J. M. Létoffé, Thermochim. Acta 1999, 325 (2), 171–180. DOI: https://doi.org/10.1016/S0040-6031(98)00576-0
- 31J. Jacques, A. Collet, S. H. Wilen, A. Collet, Enantiomers, Racemates, and Resolutions, Wiley, New York 1981.
- 32M. Matsuoka, R. Ozawa, J. Cryst. Growth 1989, 96 (3), 596–604. DOI: https://doi.org/10.1016/0022-0248(89)90057-2
- 33A. A. Smith, Tetrahedron Asymmetry 1998, 9 (16), 2925–2937. DOI: https://doi.org/10.1016/S0957-4166(98)00292-4
- 34A. Klamt, V. Jonas, T. Bürger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102 (26), 5074–5085. DOI: https://doi.org/10.1021/jp980017s
- 35M. Toivola, N. L. Prisle, J. Elm, E. M. Waxman, R. Volkamer, T. Kurtén, J. Phys. Chem. A 2017, 121 (33), 6288–6295. DOI: https://doi.org/10.1021/acs.jpca.7b04847
- 36C. Loschen, A. Klamt, Ind. Eng. Chem. Res. 2012, 51 (43), 14303–14308. DOI: https://doi.org/10.1021/ie3023675
- 37Y. A. Abramov, C. Loschen, A. Klamt, J. Pharm. Sci. 2012, 101 (10), 3687–3697. DOI: https://doi.org/10.1002/jps.23227
- 38M. Simon, P. Donnellan, B. Glennon, R. C. Jones, Chem. Eng. Technol. 2018, 41 (5), 921–927. DOI: https://doi.org/10.1002/ceat.201700427
- 39Y. Wang, A. Chen, in Stereoselective Synthesis of Drugs and Natural Products, Wiley, Hoboken 2013.
- 40M. Balawejder, D. Kiwala, H. Lorenz, A. Seidel-Morgenstern, W. Piatkowski, D. Antos, Cryst. Growth Des. 2012, 12 (5), 2557–2566. DOI: https://doi.org/10.1021/cg300166g
- 41K. M. J. Brands, A. J. Davies, Chem. Rev. 2006, 106 (7), 2711–2733. DOI: https://doi.org/10.1021/cr0406864
- 42M. S. Aksoy, A. Yıldırım, Phosphorus Sulfur Silicon Relat Elem. 2024, 199 (6), 520–535. DOI: https://doi.org/10.1080/10426507.2024.2396442
- 43I. A. Shuklov, H. Jiao, J. Schulze, W. Tietz, K. Kühlein, A. Börner, Tetrahedron Lett. 2011, 52 (9), 1027–1030. DOI: https://doi.org/10.1016/j.tetlet.2010.12.094
- 44M. Reist, B. Testa, P.-A. Carrupt, M. Jung, V. Schurig, Chirality 1995, 7 (6), 396–400. DOI: https://doi.org/10.1002/chir.530070603