Synergistic Acceleration of Adsorbent Material Development by DFT and ML for CO2 Capture
Corresponding Author
Jianjun Cai
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorQianlang Liang
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
Search for more papers by this authorMing Luo
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorCorresponding Author
Jianjun Cai
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorQianlang Liang
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
Search for more papers by this authorMing Luo
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorAbstract
The development of high-performance solid adsorbents for CO2 capture is crucial for reducing carbon emissions and combating climate change. Density functional theory (DFT) has been widely used to explore the adsorption mechanisms of solid adsorbents, but its computational cost limits large-scale material screening. Machine learning (ML) as a data-driven approach promotes materials development. This paper reviews the synergistic integration of DFT and ML in the design and development of solid amine adsorbents, metal-organic framework materials, and calcium-based adsorbents. With high-quality training data generated by DFT, ML models can effectively predict material properties. In addition, the integration of ML accelerates high-throughput screening, significantly improving the speed and accuracy of material discovery. This review summarizes recent advances and perspectives in the application of computational methods for the rational design of solid adsorbents.
References
- 1Z. Liu, Z. Deng, S. J. Davis, P. Ciais, Nat. Rev. Earth Environ. 2024, 5 (4), 253ā254. DOI: https://doi.org/10.1038/s43017-024-00532-2
- 2A. Zhumadilova, S. Zhigitova, M. Turalina, Sci. Horiz. 2023, 26 (6), 97ā109. DOI: https://doi.org/10.48077/scihor6.2023.97
10.48077/scihor6.2023.97 Google Scholar
- 3F. Nath, M. N. Mahmood, N. Yousuf, Geoenergy Sci. Eng. 2024, 238, 212726. DOI: https://doi.org/10.1016/j.geoen.2024.212726
- 4H. F. Hasan, F. T. Al-Sudani, T. M. Albayati, I. K. Salih, H. N. Hharah, H. S. Majdi, N. M. Cata Saady, S. Zendehboudi, A. Amari, S. A. Gheni, Process Saf. Environ. Prot. 2024, 182, 975ā988. DOI: https://doi.org/10.1016/j.psep.2023.12.025
- 5E. Benhelal, E. Shamsaei, M. I. Rashid, J. Environ. Sci. (China) 2021, 104, 84ā101. DOI: https://doi.org/10.1016/j.jes.2020.11.020
- 6P. Zhang, K. Feng, L. Yan, Y. Guo, B. Gao, J. Li, Environ. Sci. Ecotechnology 2024, 17, 100295. DOI: https://doi.org/10.1016/j.ese.2023.100295
- 7H. Pang, A. Sun, H. Xu, G. Xiao, Chem. Eng. J. 2021, 425, 130675. DOI: https://doi.org/10.1016/j.cej.2021.130675
- 8Y. Yan, T. N. Borhani, S. G. Subraveti, K. N. Pai, V. Prasad, A. Rajendran, P. Nkulikiyinka, J. O. Asibor, Z. Zhang, D. Shao, L. Wang, W. Zhang, Y. Yan, W. Ampomah, J. You, M. Wang, E. J. Anthony, V. Manovic, P. T. Clough, Energy Environ. Sci. 2021, 14 (12), 6122ā6157. DOI: https://doi.org/10.1039/d1ee02395k
- 9M. Rahimi, S. M. Moosavi, B. Smit, T. A. Hatton, Cell Rep. Phys. Sci. 2021, 2 (4), 100396. DOI: https://doi.org/10.1016/j.xcrp.2021.100396
- 10E. G. Al-Sakkari, A. Ragab, H. Dagdougui, D. C. Boffito, M. Amazouz, Sci. Total Environ. 2024, 917, 170085. DOI: https://doi.org/10.1016/j.scitotenv.2024.170085
- 11E. G. Al-Sakkari, A. Ragab, T. M. Y. So, M. Shokrollahi, H. Dagdougui, P. Navarri, A. Elkamel, M. Amazouz, J. Environ. Chem. Eng. 2023, 11 (5), 110732. DOI: https://doi.org/10.1016/j.jece.2023.110732
- 12N. Chiabaut, R. Faitout, Transp. Res. Part C: Emerg. Technol. 2021, 124, 102920. DOI: https://doi.org/10.1016/j.trc.2020.102920
- 13D. Zhang, Z. Lin, L. Xuan, M. Lu, B. Shi, J. Shi, F. He, M. Battino, L. Zhao, X. Zou, Food Chem. 2024, 439, 137978. DOI: https://doi.org/10.1016/j.foodchem.2023.137978
- 14X. Zhou, J. Sun, Y. Tian, B. Lu, Y. Hang, Q. Chen, Food Chem. 2020, 321, 126503. DOI: https://doi.org/10.1016/j.foodchem.2020.126503
- 15X. Chang, X. Huang, W. Xu, X. Tian, C. Wang, L. Wang, S. Yu, J. Food Process Eng. 2021, 44 (9), e13783. DOI: https://doi.org/10.1111/jfpe.13783
- 16F. Yang, J. Sun, J. Cheng, L. Fu, S. Wang, M. Xu, J. Food Process Eng. 2023, 46 (4), e14304. DOI: https://doi.org/10.1111/jfpe.14304
- 17E. Bonah, X. Huang, R. Yi, J. H. Aheto, R. Osae, M. Golly, J. Food Process Eng. 2019, 42 (6), e13236. DOI: https://doi.org/10.1111/jfpe.13236
- 18A. Raza, Y. Hu, Y. Lu, Eur. J. Agron. 2024, 160, 127297. DOI: https://doi.org/10.1016/j.eja.2024.127297
- 19Y. Zhu, S. Fan, M. Zuo, B. Zhang, Q. Zhu, J. Kong, Foods 2024, 13 (10), 1570. DOI: https://doi.org/10.3390/foods13101570
- 20J. Cheng, J. Sun, K. Yao, M. Xu, S. Wang, L. Fu, J. Sci. Food Agric. 2023, 103 (5), 2690ā2699. DOI: https://doi.org/10.1002/jsfa.12376
- 21W. Zhu, Z. Feng, S. Dai, P. Zhang, X. Wei, Agriculture 2022, 12 (11), 1785. DOI: https://doi.org/10.3390/agriculture12111785
10.3390/agriculture12111785 Google Scholar
- 22Y. Liang, H. Lin, W. Kang, X. Shao, J. Cai, H. Li, Q. Chen, J. Sci. Food Agric. 2023, 103 (14), 6790ā6799. DOI: https://doi.org/10.1002/jsfa.12777
- 23G. Qiu, H. Lu, X. Wang, C. Wang, S. Xu, X. Liang, C. Fan, Horticulturae 2023, 9 (8), 889. DOI: https://doi.org/10.3390/horticulturae9080889
- 24X. Li, H. Zhong, H. Yang, L. Li, Q. Wang, J. Chem. Inf. Model. 2024, 64 (16), 6361ā6368. DOI: https://doi.org/10.1021/acs.jcim.4c00724
- 25M. Safarzadeh Khosrowshahi, A. Afshari Aghajari, M. Rahimi, F. Maleki, E. Ghiyabi, A. Rezanezhad, A. Bakhshi, E. Salari, H. Shayesteh, H. Mohammadi, Mater. Today Sustain. 2024, 27, 100900. DOI: https://doi.org/10.1016/j.mtsust.2024.100900
10.1016/j.mtsust.2024.100900 Google Scholar
- 26X. Deng, W. Yang, S. Li, H. Liang, Z. Shi, Z. Qiao, Appl. Sci. 2020, 10 (2), 569. DOI: https://doi.org/10.3390/app10020569
- 27P. Nkulikiyinka, Y. Yan, F. Güleç, V. Manovic, P. T. Clough, Energy AI 2020, 2, 100037. DOI: https://doi.org/10.1016/j.egyai.2020.100037
- 28Y. Yan, T. Mattisson, P. Moldenhauer, E. J. Anthony, P. T. Clough, Chem. Eng. J. 2020, 387, 124072. DOI: https://doi.org/10.1016/j.cej.2020.124072
- 29H. Wu, X. Wang, X. Wang, W. Su, Arabian J. Chem. 2024, 17 (2), 105507. DOI: https://doi.org/10.1016/j.arabjc.2023.105507
- 30H. Liang, K. Jiang, T.-A. Yan, G.-H. Chen, ACS Omega 2021, 6 (13), 9066ā9076. DOI: https://doi.org/10.1021/acsomega.1c00100
- 31X. Wang, Y. Gao, E. Krzystowczyk, S. Iftikhar, J. Dou, R. Cai, H. Wang, C. Ruan, S. Ye, F. Li, Energy Environ. Sci. 2022, 15 (4), 1512ā1528. DOI: https://doi.org/10.1039/D1EE02889H
- 32A. G. Yohannes, C. Lee, P. Talebi, D. H. Mok, M. Karamad, S. Back, S. Siahrostami, ACS Catal. 2023, 13 (13), 9007ā9017. DOI: https://doi.org/10.1021/acscatal.3c01249
- 33H. Liu, Z. Liang, S. Wang, N. Ma, S. Chen, J. Environ. Manag. 2021, 292, 112722. DOI: https://doi.org/10.1016/j.jenvman.2021.112722
- 34F. Liu, S. Chen, Y. Gao, J. Colloid Interface Sci. 2017, 506, 236ā244. DOI: https://doi.org/10.1016/j.jcis.2017.07.049
- 35P. Zang, J. Tang, H. Zhang, X. Wang, L. Cui, J. Chen, P. Zhao, Y. Dong, Chem. Eng. J. 2024, 485, 149938. DOI: https://doi.org/10.1016/j.cej.2024.149938
- 36H. Yan, J. Liu, G. Li, Y. Zhao, Y. Wang, C. Wu, W. Wu, R. Zhang, G. Zhang, Chem. Eng. J. 2024, 498, 155142. DOI: https://doi.org/10.1016/j.cej.2024.155142
- 37R. S. Madyal, J. S. Arora, RSC Adv. 2014, 4 (39), 20323ā20333. DOI: https://doi.org/10.1039/c4ra00444b
- 38S. Zhang, H. Dong, A. Lin, C. Zhang, H. Du, J. Mu, J. Han, J. Zhang, F. Wang, ACS Sustainable Chem. Eng. 2022, 10 (39), 13185ā13193. DOI: https://doi.org/10.1021/acssuschemeng.2c04492
- 39S. Li, Z. Huang, Y. Li, S. Deng, X. E. Cao, Energy AI 2025, 20, 100477. DOI: https://doi.org/10.1016/j.egyai.2025.100477
- 40J. Li, Y. Fan, R. Zhang, D. Ban, Z. Duan, X. Liu, L. Liu, Mater. Chem. Front. 2024, 8 (21), 3509ā3527. DOI: https://doi.org/10.1039/D4QM00358F
- 41L. Wang, Y.-A. Li, F. Yang, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, Inorg. Chem. 2014, 53 (17), 9087ā9094. DOI: https://doi.org/10.1021/ic501100p
- 42Y. Zhang, X. Yu, Y. Hou, C. Liu, G. Xie, X. Chen, Mol. Catal. 2024, 555, 113851. DOI: https://doi.org/10.1016/j.mcat.2024.113851
- 43T. Ghanbari, F. Abnisa, W. M. A. Wan Daud, Sci. Total Environ. 2020, 707, 135090. DOI: https://doi.org/10.1016/j.scitotenv.2019.135090
- 44X. Qian, F. Sun, J. Sun, H. Wu, F. Xiao, X. Wu, G. Zhu, Nanoscale 2017, 9 (5), 2003ā2008. DOI: https://doi.org/10.1039/C6NR07801J
- 45P. Kumar, B. Anand, Y. F. Tsang, K.-H. Kim, S. Khullar, B. Wang, Environ. Res. 2019, 176, 108488. DOI: https://doi.org/10.1016/j.envres.2019.05.019
- 46M. I. Severino, E. Gkaniatsou, F. Nouar, M. L. Pinto, C. Serre, Faraday Discuss. 2021, 231 (0), 326ā341. DOI: https://doi.org/10.1039/D1FD00018G
- 47X. Dong, X. Liu, Y. Chen, M. Zhang, J. CO2 Util. 2018, 24, 64ā72. DOI: https://doi.org/10.1016/j.jcou.2017.11.014
- 48S. Cai, L. Yu, E. Huo, Y. Ren, X. Liu, Y. Chen, Langmuir 2024, 40 (13), 6869ā6877. DOI: https://doi.org/10.1021/acs.langmuir.3c03782
- 49Q. Shuai, W.-L. Li, C. Zhao, J. Yu, Mater. Today Commun. 2024, 40, 110050. DOI: https://doi.org/10.1016/j.mtcomm.2024.110050
- 50J. Lin, Z. Liu, Y. Guo, S. Wang, Z. Tao, X. Xue, R. Li, S. Feng, L. Wang, J. Liu, H. Gao, G. Wang, Y. Su, Nano Today 2023, 49, 101802. DOI: https://doi.org/10.1016/j.nantod.2023.101802
- 51Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He, Z. Qiao, C. Zhong, J. Membr. Sci. 2022, 650, 120399. DOI: https://doi.org/10.1016/j.memsci.2022.120399
- 52K. Guan, F. Xu, X. Huang, Y. Li, S. Guo, Y. Situ, Y. Chen, J. Hu, Z. Liu, H. Liang, X. Zhu, Y. Wu, Z. Qiao, J. Colloid Interface Sci. 2024, 662, 941ā952. DOI: https://doi.org/10.1016/j.jcis.2024.02.098
- 53S. Achour, Z. Hosni, Can. J. Chem. Eng. 2024, 03 (5), 2161ā2173. DOI: https://doi.org/10.1002/cjce.25509
10.1002/cjce.25509 Google Scholar
- 54T. Bailey, A. Jackson, R. A. Berbece, K. Wu, N. Hondow, E. Martin, J. Chem. Inf. Model. 2023, 63 (15), 4545ā4551. DOI: https://doi.org/10.1021/acs.jcim.3c00135
- 55K. Choudhary, T. Yildirim, D. W. Siderius, A. G. Kusne, A. McDannald, D. L. Ortiz-Montalvo, Comput. Mater. Sci. 2022, 210, 111388. DOI: https://doi.org/10.1016/j.commatsci.2022.111388
- 56R. Anderson, J. Rodgers, E. Argueta, A. Biong, D. A. Gómez-Gualdrón, Chem. Mater. 2018, 30 (18), 6325ā6337. DOI: https://doi.org/10.1021/acs.chemmater.8b02257
- 57R. Goeminne, L. Vanduyfhuys, V. Van Speybroeck, T. Verstraelen, J. Chem. Theory Comput. 2023, 19 (18), 6313ā6325. DOI: https://doi.org/10.1021/acs.jctc.3c00495
- 58B. Zheng, F. L. Oliveira, R. Neumann Barros Ferreira, M. Steiner, H. Hamann, G. X. Gu, B. Luan, ACS Nano 2023, 17 (6), 5579ā5587. DOI: https://doi.org/10.1021/acsnano.2c11102
- 59X. Ma, X. Huang, H. Zhang, X. Hu, T. Feng, Chem. Eng. J. 2023, 452, 139552. DOI: https://doi.org/10.1016/j.cej.2022.139552
- 60P. Yang, L. Duan, H. Tang, T. Cai, Z. Sun, Greenhouse Gases: Sci. Technol. 2018, 8 (6), 1110ā1123. DOI: https://doi.org/10.1002/ghg.1822
- 61Y. Fan, J. G. Yao, Z. Zhang, M. Sceats, Y. Zhuo, L. Li, G. C. Maitland, P. S. Fennell, Fuel Process. Technol. 2018, 169, 24ā41. DOI: https://doi.org/10.1016/j.fuproc.2017.09.006
- 62P. Yang, Z. Sun, L. Duan, H. Tang, Greenhouse Gases: Sci. Technol. 2020, 10 (2), 472ā483. DOI: https://doi.org/10.1002/ghg.1905
- 63D. He, H. Gong, Y. Chen, Z. Jiao, Y. Liu, X. Zhang, C. Qin, H. Yin, Fuel 2021, 295, 120634. DOI: https://doi.org/10.1016/j.fuel.2021.120634
- 64L. Liu, D. Hong, X. Guo, J. CO2 Util. 2017, 22, 155ā163. DOI: https://doi.org/10.1016/j.jcou.2017.09.022
- 65X. Yan, Y. Li, J. Zhao, Z. Wang, Energy Fuels 2020, 34 (5), 6197ā6208. DOI: https://doi.org/10.1021/acs.energyfuels.0c00972
- 66D. He, Z. Ou, C. Qin, T. Deng, J. Yin, G. Pu, Chem. Eng. J. 2020, 379, 122348. DOI: https://doi.org/10.1016/j.cej.2019.122348