Study on the Preparation of Paraffin/Melamine Microcapsules for TBPB Reaction Thermal Control
Luping Gu
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCun Wang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCorresponding Author
Lei Ni
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
E-mail: [email protected]
Search for more papers by this authorZhiquan Chen
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorDanfeng Zhang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorJuncheng Jiang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorYuanyuan Wang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorLuping Gu
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCun Wang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCorresponding Author
Lei Ni
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
E-mail: [email protected]
Search for more papers by this authorZhiquan Chen
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorDanfeng Zhang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorJuncheng Jiang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorYuanyuan Wang
College of Safety Science and Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, Jiangsu, 211816 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorAbstract
To suppress thermal runaway during the synthesis process of tert-butyl peroxybenzoate (TBHB), phase change microcapsules (microPCMs) were prepared using paraffin as the core material and melamine-formaldehyde resin (MF) as the wall material via in situ polymerization. When the emulsification time was 20 min, the reaction temperature was 80 °C, and the paraffin mass was 10 g, the characterization of SEM, Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and x-ray photoelectron spectroscopy (XPS) confirmed that the microPCMs were successfully fabricated, with microcapsule encapsulation rate reaching 62.5 %. The investigation into the thermal runaway suppression effect of microPCMs during the synthesis of TBPB revealed that adding 5 g of microPCMs at 50 °C optimized overtemperature suppression, reducing the maximum temperature of the reaction system from 58.3 °C to 50.3 °C. This work expands the application of microPCMs in semi-batch reactions and has significant implications for the prevention of thermal runaway incidents.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1H. Wang, L. Wei, K. Wang, Y. Duo, C. Chen, S. Zhang, M. Su, T. Zeng, J. Loss Prev. Process Ind. 2024, 89, 105279. DOI: https://doi.org/10.1016/j.jlp.2024.105279
- 2J. Jiang, H. Wu, L. Ni, M. Zou, Process Saf. Environ. Prot. 2018, 120, 87–96. DOI: https://doi.org/10.1016/j.psep.2018.08.029
- 3T. Ge, Q. Dong, Y. Liu, B. Li, W. Bai, Process Saf. Environ. Prot. 2022, 165, 860–871. DOI: https://doi.org/10.1016/j.psep.2022.07.040
- 4S. Wang, Xu Peng, L. Jiang, B. Li, Process Saf. Environ. Prot. 2024, 182, 1185–1195. DOI: https://doi.org/10.1016/j.psep.2023.12.063
- 5Q. Chen, L. Ni, J. Jiang, Q. Wang, Renew. Energy 2021, 170, 387–399. DOI: https://doi.org/10.1016/j.renene.2021.01.132
- 6L. Ni, D. Yang, Y. Liu, C. Li, Q. Chen, J. Jiang, Y. Pan, J. Loss Prev. Process Ind. 2023, 81, 104971. DOI: https://doi.org/10.1016/j.jlp.2023.104971
- 7D. Yang, L. Ni, L. Gu, Q. Chen, J. Jiang, J. Su, J. Loss Prev. Process Ind. 2024, 89, 105320. DOI: https://doi.org/10.1016/j.jlp.2024.105320
- 8Q. Huang, X. Li, G. Zhang, J. Weng, Y. Wang, J. Deng, J. Cleaner Prod. 2022, 330, 129718. DOI: https://doi.org/10.1016/j.jclepro.2021.129718
- 9R. Ni, D. Zhang, R. Wang, Z. Xie, Y. Wang, Case Stud. Therm. Eng. 2023, 48, 103160. DOI: https://doi.org/10.1016/j.csite.2023.103160
- 10M. Chen, M. Zhu, L. Zhao, Y. Chen, Appl. Energy 2024, 367, 123394. DOI: https://doi.org/10.1016/j.apenergy.2024.123394
- 11G. V. N. Trivedi, R. Parameshwaran, Sci. Rep. 2020, 10 (1), 18353. DOI: http://doi.org/10.1038/s41598-020-75494-8
- 12X. Guo, S. Zhang, J. Cao, Composites, Part A 2018, 107, 83–93. DOI: https://doi.org/10.1016/j.compositesa.2017.12.032
- 13Q. Chen, L. Ni, J. Jiang, T. Parker, Z. Chen, Z. Cheng, W. Jiang, Q. Wang, Appl. Therm. Eng. 2020, 178, 115531. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115531
- 14Y. Li, C. Li, N. Lin, B. Xie, D. Zhang, J. Chen, Mater. Today Energy 2021, 22, 100866. DOI: https://doi.org/10.1016/j.mtener.2021.100866
- 15S. Baghaei Oskouei, G. F. Frate, R. Christodoulaki, Ö. Bayer, I. S. Akmandor, U. Desideri, L. Ferrari, V. Drosou, I. Tarı, Energy Convers. Manage. 2024, 302, 118117. DOI: https://doi.org/10.1016/j.enconman.2024.118117
10.1016/j.enconman.2024.118117 Google Scholar
- 16X. Li, J. Wang, Z. Wu, W. Cao, X. Zhang, Renew. Energy 2024, 227, 120529. DOI: https://doi.org/10.1016/j.renene.2024.120529
- 17M. Song, F. Niu, N. Mao, Y. Hu, S. Deng, Energy Build. 2018, 158, 776–793. DOI: https://doi.org/10.1016/j.enbuild.2017.10.066
- 18K. Kant, A. Shukla, A. Sharma, Sol. Energy Mater. Sol. Cells 2017, 172, 82–92. DOI: http://doi.org/10.1016/j.solmat.2017.07.023
- 19F. Wang, W. Lin, Z. Ling, X. Fang, Sol. Energy Mater. Sol. Cells 2019, 191, 218–234. DOI: https://doi.org/10.1016/j.solmat.2018.11.016
- 20A. El Majd, Z. Younsi, N. Youssef, N. Belouaggadia, A. El Bouari, Energy Build. 2023, 297, 113465. DOI: https://doi.org/10.1016/j.enbuild.2023.113465
- 21Y. Zhang, Y. Li, L. Dong, Y. Liu, J. Fan, Q. Lei, H. Xie, W. Yu, ACS Appl. Nano Mater. 2022, 5 (11), 16831–16841. DOI: http://doi.org/10.1021/acsanm.2c03787
- 22C. Feng, K. Sun, J. Ji, G. Cui, L. Hou, M. Shi, F. Wei, W. Yang, J. Energy Storage 2024, 84, 110719. DOI: https://doi.org/10.1016/j.est.2024.110719
- 23W. Zhang, H. Cheng, R. Pan, J.H Yang, Y. Gong, Z. Gan, R. Hu, J. Ding, L. Chen, X. Zhang, X. Tian, Langmuir 2022, 38 (51), 16055–16066. DOI: http://doi.org/10.1021/acs.langmuir.2c02660
- 24F. Ma, Y. Hou, Z. Fu, W. Qin, Y. Tang, J. Dai, Y. Wang, C. Peng, Constr. Build. Mater. 2023, 392, 131814. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131814
- 25Y. Zhang, P. Shu, F. Zhai, S. Chen, K. Wang, J. Deng, F. Kang, L. Li, Process Saf. Environ. Prot. 2021, 152, 536–548. DOI: https://doi.org/10.1016/j.psep.2021.06.021
- 26A. Ohayon-Lavi, G. Ziskind, O. Regev, J. Colloid Interface Sci. 2022, 627, 587–595. DOI: https://doi.org/10.1016/j.jcis.2022.07.074
- 27Z. Jiang, W. Yang, F. He, C. Xie, J. Fan, J. Wu, K. Zhang, Langmuir 2018, 34 (47), 14254–14264. http://doi.org/10.1021/acs.langmuir.8b03084
- 28P. Min, J. Liu, X. Li, F. An, P. Liu, Y. Shen, N. Koratkar, Z.-Z. Yu, Adv. Funct. Mater. 2018, 28 (51), 1805365. DOI: https://doi.org/10.1002/adfm.201805365
- 29B. Prabhu, A. Valan Arasu, P. Gurusamy, A. Amala Mithin Minther Singh, T. Arunkumar, Renew. Sustain. Energy Rev. 2024, 197, 114372. DOI: https://doi.org/10.1016/j.rser.2024.114372
- 30X. Geng, R. Huang, X. Zhang, W. Li, Energy 2021, 214, 119029. DOI: https://doi.org/10.1016/j.energy.2020.119029
- 31H. S. Kim, Y. J. Lee, Y. J. Koo, E. C. Pack, K. M. Lim, D. W. Choi, Food Control 2021, 125, 107981. DOI: https://doi.org/10.1016/j.foodcont.2021.107981
- 32H. Cui, H. Chen, Z. Guo, J. Xu, J. Shen, Microporous Mesoporous Mater. 2020, 309, 110591. DOI: https://doi.org/10.1016/j.micromeso.2020.110591
- 33Y.-H. Yang, X.-Z. Li, S. Zhang, RSC Adv. 2018, 8 (52), 29980–29987. DOI: http://doi.org/10.1039/C8RA05769A
- 34H.-L. Zhou, J.-C. Jiang, A.-C. Huang, J. Loss Prev. Process Ind. 2023, 85, 105166. DOI: https://doi.org/10.1016/j.jlp.2023.105166
- 35M. S. Mert, H. H. Mert, C. Yilmaz Gumus, J. Appl. Polym. Sci. 2019, 136 (33), 47874. DOI: https://doi.org/10.1002/app.47874
- 36X. Liu, Z. Guo, J. Wang, H. Xie, ACS Appl. Mater. Interfaces 2023, 15 (16), 20444–57. DOI: http://doi.org/10.1021/acsami.3c02941
- 37R. Bharathiraja, T. Ramkumar, M. Selvakumar, N. Radhika, Renew. Energy 2024, 222, 119986. DOI: https://doi.org/10.1016/j.renene.2024.119986
- 38S. Han, S. Lyu, Z. Chen, F. Fu, S. Wang, Carbohydr. Polym. 2020, 234, 115923. DOI: https://doi.org/10.1016/j.carbpol.2020.115923
- 39S. Han, Y. Chen, S. Lyu, et al., Colloids Surf. A: Physicochem. Eng. Asp. 2020, 585, 124046. DOI: http://doi.org/10.1016/j.colsurfa.2019.124046
- 40J. Wang, J. Hou, H. Xu, K. Lei, Y.-L. Sun, M.-D. Lang, J. Funct. Polym. 2018, 31 (4), 381–6. DOI: http://doi.org/10.14133/j.cnki.1008-9357.20171226001
- 41S. Han, J. Li, Y. Lu, J. Zang, Q. Ding, J. Su, X. Wang, J. Song, Y. Lu, Int. J. Biol. Macromol. 2024, 261, 129640. DOI: https://doi.org/10.1016/j.ijbiomac.2024.129640